Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(3): 030402, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735421

RESUMEN

Two close parallel mirrors attract due to a small force (Casimir effect) originating from the quantum vacuum fluctuations of the electromagnetic field. These vacuum fluctuations can also induce motional forces exerted upon one mirror when the other one moves. Here, we consider an optomechanical system consisting of two vibrating mirrors constituting an optical resonator. We find that motional forces can determine noticeable coupling rates between the two spatially separated vibrating mirrors. We show that, by tuning the two mechanical oscillators into resonance, energy is exchanged between them at the quantum level. This coherent motional coupling is enabled by the exchange of virtual photon pairs, originating from the dynamical Casimir effect. The process proposed here shows that the electromagnetic quantum vacuum is able to transfer mechanical energy somewhat like an ordinary fluid. We show that this system can also operate as a mechanical parametric down-converter even at very weak excitations. These results demonstrate that vacuum-induced motional forces open up new possibilities for the development of optomechanical quantum technologies.

2.
Phys Rev Lett ; 118(25): 254301, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696761

RESUMEN

We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.

3.
Nat Commun ; 14(1): 4397, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474535

RESUMEN

Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena and promise new applications in quantum technologies. In these nonperturbative regimes, a qubit-resonator system has an entangled quantum vacuum with a nonzero average photon number in the resonator, where the photons are virtual and cannot be directly detected. The vacuum field, however, is able to induce the symmetry breaking of a dispersively coupled probe qubit. We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator deep-strongly coupled with a flux qubit. This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.

4.
Sci Rep ; 10(1): 21660, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303819

RESUMEN

The coherent nonlinear process where a single photon simultaneously excites two or more two-level systems (qubits) in a single-mode resonator has recently been theoretically predicted. Here we explore the case where the two qubits are placed in different resonators in an array of two or three weakly coupled resonators. Investigating different setups and excitation schemes, we show that this process can still occur with a probability approaching one under specific conditions. The obtained results provide interesting insights into subtle causality issues underlying the simultaneous excitation processes of qubits placed in different resonators.

5.
Sci Rep ; 8(1): 17825, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546126

RESUMEN

Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlation functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glauber's original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths. Our derivation uses Fermi's golden rule, together with an expansion of system operators in the eigenbasis of the interacting light-matter system, to arrive at the correct photodetection probabilities. We consider both narrow- and wide-band photodetectors. Our description is also valid for point-like detectors placed inside the optical cavity. As an application, we propose a gedanken experiment confirming the virtual nature of the bare excitations that enrich the ground state of the quantum Rabi model.

6.
ACS Nano ; 5(9): 7354-61, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21806014

RESUMEN

Laser cooling the center-of-mass motion of systems that exhibit Fano resonances is discussed. We find that cooling occurs for red or blue detuning of the laser frequency from resonance depending on the Fano factor associated with the resonance. The combination of the Doppler effect with the radiation cross-section quenching typical of quantum interference yields temperatures below the conventional Doppler limit. This scheme opens perspectives for controlling the motion of mesoscopic systems such as hybrid nanostructures at the quantum regime and the exploration of motional nonclassical states at the nanoscale.

7.
ACS Nano ; 4(11): 6369-76, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21028780

RESUMEN

We demonstrate with accurate scattering calculations that a system constituted by a single quantum emitter (a semiconductor quantum dot) placed in the gap between two metallic nanoparticles can display the vacuum Rabi splitting. The largest dimension of the investigated system is only 36 nm. This nonperturbative regime is highly desirable for many possible applications in quantum information processing or schemes for controlling individual photons. Along this road, it will be possible to implement scalable photonic quantum computation without renouncing to the nanometric size of the classical logic gates of the present most compact electronic technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA