Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 30(29): 8973-9, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25001526

RESUMEN

In this work we report the application of two and three-beam single pulse laser interference lithography to thin polymer films of poly(trimethylene terephthalate) (PTT). By irradiating the sample surface with temporary and spatially overlapped single pulses from two or three coherent beams and changing the angles of incidence, we have accomplished the fabrication of large-area polymer micro and submicrogratings as well as submicrometric cavities arranged in a hexagonal lattice. The characterization of the structures in real space by atomic force microscopy (AFM) and scanning electron microscopy (SEM) has allowed us to determine the formation mechanism of the microgratings to be based on different ablation regimes depending on the local fluence. Moreover, complementary characterization of the submicrometric cavities in reciprocal space by grazing incidence small-angle X-ray scattering (GISAXS) confirms the existence of large areas where two-dimensional order is present. The experiments presented in this work demonstrate the suitability of single pulse laser interference lithography for micro and submicrostructuring polymer films, opening up new possibilities for patterning and paving the way for potential applications where polymer structures are involved.

2.
ACS Appl Mater Interfaces ; 5(21): 11402-8, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24127989

RESUMEN

In the present work, we report on the application of optical near fields to nanostructuring of poly(trimethylene terephthalate) (PTT) thin films. By exposure to a single ultraviolet nanosecond laser pulse, the spatial intensity modulation of the near-field distribution created by a silica microsphere is imprinted into the films. Setting different angles of incidence of the laser, elliptical or circular periodic ring patterns can be produced with periods as small as half the laser wavelength used. These highly complex patterns show optical and topographical contrast and can be characterized by optical microscopy (OM) and atomic force microscopy (AFM). We demonstrate the key role of the laser wavelength and coherence length in achieving smooth, extended patterns in PTT by using excimer laser (193 nm) and Nd:YAG laser (266 nm) pulses. Reference experiments performed in Ge2Sb2Te5 (GST) demonstrate that nanopatterning in PTT is triggered by ablation as opposed to GST, in which nanopatterning originates from laser-induced phase change, accompanied by a small topographical contrast. The experiments presented in this work demonstrate the suitability of optical near fields for structuring polymer films, opening up new possibilities for nanopatterning and paving the way for potential applications where optical near fields and polymer nanostructures are involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA