RESUMEN
Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.
Asunto(s)
FN-kappa B , Ubiquitina , FN-kappa B/genética , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal/fisiología , Mitocondrias/metabolismo , UbiquitinaciónRESUMEN
The classical view of oxidative phosphorylation is that a proton motive force (PMF) generated by the respiratory chain complexes fuels ATP synthesis via ATP synthase. Yet, under glycolytic conditions, ATP synthase in its reverse mode also can contribute to the PMF. Here, we dissected these two functions of ATP synthase and the role of its inhibitory factor 1 (IF1) under different metabolic conditions. pH profiles of mitochondrial sub-compartments were recorded with high spatial resolution in live mammalian cells by positioning a pH sensor directly at ATP synthase's F1 and FO subunits, complex IV and in the matrix. Our results clearly show that ATP synthase activity substantially controls the PMF and that IF1 is essential under OXPHOS conditions to prevent reverse ATP synthase activity due to an almost negligible ΔpH. In addition, we show how this changes lateral, transmembrane, and radial pH gradients in glycolytic and respiratory cells.
Asunto(s)
Membranas Mitocondriales , Fuerza Protón-Motriz , Adenosina Trifosfato/metabolismo , Animales , Mamíferos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación OxidativaRESUMEN
During implantation, the murine embryo transitions from a "quiet" into an active metabolic/proliferative state, which kick-starts the growth and morphogenesis of the post-implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine-tunes the expression of genes that encode ribosomal proteins and is required for proper tissue-scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage's high-energy demands for cell proliferation and morphogenesis.
Asunto(s)
Desarrollo Embrionario , Células Madre Embrionarias , Animales , Blastocisto/metabolismo , Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , RatonesRESUMEN
The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Asunto(s)
Complejo III de Transporte de Electrones/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Óptica/métodos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Expresión Génica , Genes Reporteros , Glicerol/farmacología , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Imagen Óptica/instrumentación , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Lima1 is an extensively studied prognostic marker of malignancy and is also considered to be a tumour suppressor, but its role in a developmental context of non-transformed cells is poorly understood. Here, we characterise the expression pattern and examined the function of Lima1 in mouse embryos and pluripotent stem cell lines. We identify that Lima1 expression is controlled by the naïve pluripotency circuit and is required for the suppression of membrane blebbing, as well as for proper mitochondrial energetics in embryonic stem cells. Moreover, forcing Lima1 expression enables primed mouse and human pluripotent stem cells to be incorporated into murine pre-implantation embryos. Thus, Lima1 is a key effector molecule that mediates the pluripotency control of membrane dynamics and cellular metabolism.
Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Blastocisto , Proliferación Celular , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/citología , Femenino , Masculino , Ratones , Células Madre Pluripotentes/citologíaRESUMEN
Our group has previously established a strategy utilizing fluorescence lifetime probes to image membrane protein supercomplex (SC) formation in situ. We showed that a probe at the interface between individual mitochondrial respiratory complexes exhibits a decreased fluorescence lifetime when a supercomplex is formed. This is caused by electrostatic interactions with the adjacent proteins. Fluorescence lifetime imaging microscopy (FLIM) records the resulting decrease of the lifetime of the SC-probe. Here we present the details of our method for performing SC-FLIM, including the evaluation of fluorescence lifetimes from the FLIM images. To validate the feasibility of the technique for monitoring adaptive SC formation, we compare data obtained under different metabolic conditions. The results confirm that SC formation is dynamic.
Asunto(s)
Proteínas Fluorescentes Verdes/química , Mitocondrias/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Conformación Molecular , Multimerización de ProteínaRESUMEN
Pseudomonas aeruginosa is a Gram-negative bacterium of the proteobacteria class, and one of the most common causes of nosocomial infections. For example, it causes chronic pneumonia in cystic fibrosis patients. Patient sputum contains 2-heptyl-4-hydroxyquinoline N-oxide [HQNO] and Pseudomonas quorum sensing molecules such as the Pseudomonas quinolone signal [PQS]. It is known that HQNO inhibits the enzyme activity of mitochondrial and bacterial complex III at the Qi (quinone reduction) site, but the target of PQS is not known. In this work we have shown that PQS has a negative effect on mitochondrial respiration in HeLa and A549 cells. It specifically inhibits the complex I of the respiratory chain. In vitro analyses showed a partially competitive inhibition with respect to ubiquinone at the IQ site. In competing studies with Rotenone, PQS suppressed the ROS-promoting effect of Rotenone, which is typical for a B-type inhibitor. Prolonged incubation with PQS also had an effect on the activity of complex III.
RESUMEN
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.
Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/genética , Células HeLa , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón/genéticaRESUMEN
A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.
Asunto(s)
Peroxidación de Lípido/fisiología , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Animales , Cardiolipinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologíaRESUMEN
A detailed description of pathophysiological effects that viruses exert on their host is still challenging. For the first time, we report a highly controllable viral expression model based on an iPS-cell line from a healthy human donor. The established viral model system enables a dose-dependent and highly localized RNA-virus expression in a fully controllable environment, giving rise for new applications for the scientific community.
Asunto(s)
Células Madre Pluripotentes Inducidas/virología , Infecciones por Virus ARN/virología , Virus ARN/fisiología , Línea Celular , Doxiciclina/farmacología , Humanos , Modelos Biológicos , Miocitos Cardíacos/virología , Activación Viral/efectos de los fármacosRESUMEN
Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.
Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Respiración de la Célula , Galactosa/metabolismo , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Multimerización de Proteína/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The assembly of respiratory complexes into macromolecular supercomplexes is currently a hot topic, especially in the context of newly available structural details. However, most work to date has been done with purified detergent-solubilized material and in situ confirmation is absent. We here set out to enable the recording of respiratory supercomplex formation in living cells. Fluorescent sensor proteins were placed at specific positions at cytochrome c oxidase suspected to either be at the surface of a CI1CIII2CIV1 supercomplex or buried within this supercomplex. In contrast to other loci, sensors at subunits CoxVIIIa and CoxVIIc reported a dense protein environment, as detected by significantly shortened fluorescence lifetimes. According to 3D modelling CoxVIIIa and CoxVIIc are buried in the CI1CIII2CIV1 supercomplex. Suppression of supercomplex scaffold proteins HIGD2A and CoxVIIa2l was accompanied by an increase in the lifetime of the CoxVIIIa-sensor in line with release of CIV from supercomplexes. Strikingly, our data provide strong evidence for defined stable supercomplex configuration in situ.
Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Complejos Multiproteicos/metabolismo , Respiración de la Célula , Supervivencia Celular , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Modelos Moleculares , Fosforilación Oxidativa , Multimerización de Proteína , Subunidades de Proteína/metabolismoAsunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación Missense , Proteínas/metabolismo , Sustitución de Aminoácidos , Células HeLa , Humanos , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas/genética , Proteína Inhibidora ATPasaRESUMEN
Ion-driven ATP synthesis by rotary F0F1 ATP-synthase powers aerobic life. Since Mitchell's seminal hypothesis, this synthesis has been discussed in terms of the proton-motive force between two bulk phases, each in equilibrium. In active mitochondria, a steady proton flow cycles between pumps and the distant ATP synthase. Here we determine the lateral pH profile along the p-side of cristae in situ by attaching a ratiometric fluorescent pH-sensitive GFP variant to OXPHOS complex IV, a proton pump, and the dimeric F0F1 ATP-synthase, a proton consumer. In respiring HeLa cells, we observe that the local pH at F0F1 dimers is 0.3 units less acidic than that at complex IV. This finding is consistent with the calculated pH profile for steady proton diffusion from CIV to F0F1. The observed lateral variation in the proton-motive force necessitates a modification to Peter Mitchell's chemiosmotic proposal. The experimental technique can be extended to other pH-dependent reactions in membrane microcompartments.