Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(10): e18359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770886

RESUMEN

Cell therapy offers hope, but it also presents challenges, most particularly the limited ability of human organs and tissues to regenerate. Since many diseases are associated with irreversible pathophysiological or traumatic changes, stem cells and their derivatives are unable to secure healing. Although regenerative medicine offers chances for improvements in many diseases, such as type one diabetes and Parkinson's disease, it cannot eliminate the primary cause of many of them. While successes can be expected for diseases such as sickle cell disease, this is not the case for hereditary diseases with varied mutation types or for ciliopathies, which start in embryogenesis. In this complicated medical environment, synthetic biology offers some solutions, but their implementation will take many years. Still, positive examples such as CAR-T therapy offer hope.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Medicina Regenerativa , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Medicina Regenerativa/métodos , Animales
2.
Biochem Biophys Res Commun ; 685: 149133, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-37918325

RESUMEN

The emergence of therapies such as CAR-T has created a need for reliable, validated methods for detecting EGFRvIII in patient tumor cells. Particularly so since previous studies have already suggested that some anti-EGFRvIII antibodies may be non-specific. The present paper evaluates the use of the L8A4 antibody in the immunohistochemical (IHC) and immunocytochemical (ICC) detection of EGFRvIII in 30 glioblastoma specimens, and compares it with other methods such as RT-PCR, MLPA, and FISH. The results indicate that Real-time PCR appears to be a very specific and sensitive method of EGFRvIII detection. ICC analysis with L8A4 also appears specific but requires cell culture. IHC analyses of EGFRvIII returned a number of false positives when using L8A4. Due to the growing need for an effective diagnostic tool before starting immunotherapy methods, such as the CAR-T anti-EGFRvIII or SynNotch CAR-T recognizing EGFRvIII, it is necessary to identify a more reliable and simple method of EGFRvIII detection or improve the specificity of the anti-EGFRvIII antibody, until then, immunocytochemistry may temporarily replace immunohistochemistry.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/patología , Receptores ErbB , Inmunoterapia , Anticuerpos , Neoplasias Encefálicas/patología
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901782

RESUMEN

The number of glioblastoma (GB) cases is increasing every year, and the currently available therapies remain ineffective. A prospective antigen for GB therapy is EGFRvIII, an EGFR deletion mutant containing a unique epitope that is recognized by the L8A4 antibody used in CAR-T (chimeric antigen receptor T cell) therapy. In this study, we observed that the concomitant use of L8A4 with particular tyrosine kinase inhibitors (TKIs) does not impede the interaction between L8A4 and EGFRvIII; moreover, in this case, the stabilization of formed dimers results in increased epitope display. Unlike in wild-type EGFR, a free cysteine at position 16 (C16) is exposed in the extracellular structure of EGFRvIII monomers, leading to covalent dimer formation in the region of L8A4-EGFRvIII mutual interaction. Following in silico analysis of cysteines possibly involved in covalent homodimerization, we prepared constructs containing cysteine-serine substitutions of EGFRvIII in adjacent regions. We found that the extracellular part of EGFRvIII possesses plasticity in the formation of disulfide bridges within EGFRvIII monomers and dimers due to the engagement of cysteines other than C16. Our results suggest that the EGFRvIII-specific L8A4 antibody recognizes both EGFRvIII monomers and covalent dimers, regardless of the cysteine bridging structure. To summarize, immunotherapy based on the L8A4 antibody, including CAR-T combined with TKIs, can potentially increase the chances of success in anti-GB therapy.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Cisteína , Epítopos , Receptores ErbB , Glioblastoma/terapia , Inmunoterapia , Estudios Prospectivos
4.
J Cell Mol Med ; 26(3): 736-749, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34939316

RESUMEN

Bronchial epithelial cells and fibroblasts play an essential role in airway remodelling, due to their protective and secretory functions. There are many studies proving that infection caused by human rhinovirus may contribute to the process of airway remodelling. The beneficial properties of curcumin, the basic ingredient of turmeric, have been proved in many studies. Therefore, the aim of this study was the evaluation of curcumin immunomodulatory properties in development of airway remodelling. Fibroblasts (WI-38 and HFL1) and epithelial cells (NHBE) were incubated with curcumin. Additionally, remodelling conditions were induced with rhinovirus (HRV). Airway remodelling genes were determined by qPCR and immunoblotting. Moreover, NF-κB, c-Myc and STAT3 were silenced to analyse the pathways involved in airway remodelling. Curcumin reduced the expression of the genes analysed, especially MMP-9, TGF-ß and collagen I. Moreover, curcumin inhibited the HRV-induced expression of MMP-9, TGF-ß, collagen I and LTC4S (p < 0.05). NF-κB, c-Myc and STAT3 changed their course of expression. Concluding, our study shows that curcumin significantly downregulated gene expression related to the remodelling process, which is dependent on NF-κB and, partially, on c-Myc and STAT3. The results suggest that the remodelling process may be limited and possibly prevented, however this issue requires further research.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Curcumina , Curcumina/farmacología , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo
5.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36292985

RESUMEN

BACKGROUND: The biological role of EGFRvIII (epidermal growth factor receptor variant three) remains unclear. METHODS: Three glioblastoma DK-MG sublines were tested with EGF (epidermal growth factor) and TGFß (transforming growth factor ß). Sublines were characterized by an increased percentage of EGFRvIII-positive cells and doubling time (DK-MGlow to DK-MGextra-high), number of amplicons, and EGFRvIII mRNA expression. The influence of the growth factors on primary EGFRvIII positive glioblastomas was assessed. RESULTS: The overexpression of exoEGFRvIII in DK-MGhigh did not convert them into DK-MGextra-high, and this overexpression did not change DK-MGlow to DK-MGhigh; however, the overexpression of RASG12V increased the proliferation of DK-MGlow. Moreover, the highest EGFRvIII phosphorylation in DK-MGextra-high did not cause relevant AKT (known as protein kinase B) and ERK (extracellular signal-regulated kinase) activation. Further analyses indicate that TGFß is able to induce apoptosis of DK-MGhigh cells. This subline was able to convert to DK-MGextra-high, which appeared resistant to this proapoptotic effect. EGF acted as a pro-survival factor and stimulated proliferation; however, simultaneous senescence induction in DK-MGextra-high cells was ambiguous. Primary EGFRvIII positive (and SOX2 (SRY-Box Transcription Factor 2) positive or SOX2 negative) glioblastoma cells differentially responded to EGF and TGFß. CONCLUSIONS: The roles of TGFß and EGF in the EGFRvIII context remain unclear. EGFRvIII appears as a weak oncogene and not a marker of GSC (glioma stem cells). Hence, it may not be a proper target for CAR-T (chimeric antigen receptor T cells).


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Quiméricos de Antígenos/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Transformador beta/genética , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Oncogenes , Quinasas MAP Reguladas por Señal Extracelular/genética , ARN Mensajero , Factores de Transcripción/genética
6.
Cell Commun Signal ; 19(1): 116, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801048

RESUMEN

BACKGROUND: Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress. METHODS: We performed transcriptomic and proteomic analysis on WFS human cell model-skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency. RESULTS: Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated. CONCLUSIONS: Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Video Abstract.


Asunto(s)
Síndrome de Wolfram
7.
BMC Cancer ; 19(1): 923, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31521143

RESUMEN

BACKGROUND: Glioblastoma (GB) is considered one of the most lethal tumors. Extensive research at the molecular level may enable to gain more profound insight into its biology and thus, facilitate development and testing of new therapeutic approaches. Unfortunately, stable glioblastoma cell lines do not reflect highly heterogeneous nature of this tumor, while its primary cultures are difficult to maintain in vitro. We previously reported that senescence is one of the major mechanisms responsible for primary GB cells stabilization failure, to a lesser extent accompanied by apoptosis and mitotic catastrophe-related cell death. METHODS: We made an attempt to circumvent difficulties with glioblastoma primary cultures by testing 3 different approaches aimed to prolong their in vitro maintenance, on a model of 10 patient-derived tumor specimens. RESULTS: Two out of ten analyzed GB specimens were successfully stabilized, regardless of culture approach applied. Importantly, cells transduced with immortalizing factors or cultured in neural stem cell-like conditions were still undergoing senescence/apoptosis. Sequential in vivo/in vitro cultivation turned out to be the most effective, however, it only enabled to propagate cells with preserved molecular profile up to 3rd mice transfer. Nevertheless, it was the only method that impeded these phenomena long enough to provide sufficient amount of material for in vitro/in vivo targeted analyses. Interestingly, our data additionally demonstrated that some subpopulations of several stabilized GB cell lines undergo idiopathic senescence, however, it is counterbalanced by simultaneous proliferation of other cell subpopulations. CONCLUSIONS: In the majority of primary glioma cultures, there has to be an imbalance towards apoptosis and senescence, following few weeks of rapid proliferation. Our results indicate that it has to be associated with the mechanisms other than maintenance of glioblastoma stem cells or dependence on proteins controlling cell cycle.


Asunto(s)
Apoptosis , Neoplasias Encefálicas/etiología , Senescencia Celular , Glioblastoma/etiología , Animales , Apoptosis/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Senescencia Celular/genética , Perfilación de la Expresión Génica , Genotipo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Mutación , Fenotipo
8.
J Transl Med ; 14(1): 341, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27998294

RESUMEN

BACKGROUND: Induced pluripotent stem cells (iPSC) possess an enormous potential as both, scientific and therapeutic tools. Their application in the regenerative medicine provides new treatment opportunities for numerous diseases, including type 1 diabetes. In this work we aimed to derive insulin producing cells (IPC) from iPS cells established in defined conditions. METHODS: We optimized iPSC generation protocol and created pluripotent cell lines with stably integrated PDX1 and NKX6.1 transgenes under the transcriptional control of doxycycline-inducible promoter. These cells were differentiated using small chemical molecules and recombinant Activin A in the sequential process through the definitive endoderm, pancreatic progenitor cells and insulin producing cells. Efficiency of the procedure was assessed by quantitative gene expression measurements, immunocytochemical stainings and functional assays for insulin secretion. RESULTS: Generated cells displayed molecular markers characteristic for respective steps of the differentiation. The obtained IPC secreted insulin and produced C-peptide with significantly higher hormone release level in case of the combined expression of PDX1 and NKX6.1 induced at the last stage of the differentiation. CONCLUSIONS: Efficiency of differentiation of iPSC to IPC can be increased by concurrent expression of PDX1 and NKX6.1 during progenitor cells maturation. Protocols established in our study allow for iPSC generation and derivation of IPC in chemically defined conditions free from animal-derived components, which is of the utmost importance in the light of their prospective applications in the field of regenerative medicine.


Asunto(s)
Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/citología , Transactivadores/metabolismo , Animales , Péptido C/biosíntesis , Células Cultivadas , Reprogramación Celular , Endodermo/citología , Células Epiteliales/citología , Fibroblastos/citología , Técnicas de Transferencia de Gen , Humanos , Insulina/biosíntesis , Células Secretoras de Insulina/metabolismo , Transgenes
9.
Tumour Biol ; 35(11): 11311-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25119593

RESUMEN

One of the most crucial concerns of cancer research pertains to the differences between the neoplastic cells in tumor specimens in vivo and their counterparts in cell lines. The huge amount of results deposited in cancer genetic databases allows to address this issue from a wider perspective. Our analysis of the Sanger Institute Catalog Of Somatic Mutations In Cancer (COSMIC) database v61 showed a lower percentage of homozygous mutations in a group of tumor suppressor genes in surgical samples (in vivo) in comparison to their frequency in cell lines (in vitro). Similarly, the mutations resulting in the lack of protein (e.g., nonsense mutations or whole gene deletions) of several tumor suppressor genes (TSGs) were more frequently observed in vitro than in vivo. In this article, we suggest two potential explanations of these data. Firstly, TSG heterozygous mutations resulting in the modified protein (e.g., missense mutations) may be gradually (when the specific molecular context is achieved) changed to homozygous mutations resulting in the lack of protein during carcinogenesis. Secondly, among different independent pathways of tumorigenesis, those leading to homozygous nonsense mutations are characteristic for cells which are more efficiently stabilized in vitro. To conclude, these observations may be interesting for researchers working with cell line in vitro models illustrating the extent to which they reflect the tumors in vivo.


Asunto(s)
ADN de Neoplasias/genética , Mutación/genética , Neoplasias/genética , Neoplasias/cirugía , Proteínas Supresoras de Tumor/genética , Bases de Datos Genéticas , Eliminación de Gen , Humanos , Células Tumorales Cultivadas
10.
BMC Cancer ; 14: 669, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25223755

RESUMEN

BACKGROUND: Previously we have suggested that cancer cells develop a mechanism(s) which allows for either: silencing of the wild-type TP53 transcription, degradation of the wild-type TP53 mRNA, or selective overproduction of the mutated TP53 mRNA, which is the subject of this article. Sequencing of TP53 on the respective cDNA and DNA templates from tumor samples were found to give discordant results. DNA analysis showed a pattern of heterozygous mutations, whereas the analysis of cDNA demonstrated the mutated template only. We hypothesized that different TP53 gene expression levels of each allele may be caused by the polymorphism within intron 3 (PIN3). The aim of this study was to test if one of the polymorphic variants of PIN3 (A1 or A2) in the heterozygotes is associated with a higher TP53 expression, and therefore, responsible for the haploinsufficiency phenomenon. METHODS: 250 tumor samples were tested. To analyze the involvement of PIN3 polymorphic variant (A1 or A2) on TP53 mRNA expression regulation, bacterial subcloning combined with sequencing analyses, dual luciferase reporter assays and bioinformatic analysis were performed. RESULTS: Haplotype analysis showed the predominance of the mutated template during the cDNA sequencing in all samples showing a heterozygous TP53 mutation and PIN3 heterozygosity. Out of 30 samples (from the total of 250 tested samples) which carried TP53 mutations and had a bias in allelic expression 6 were heterozygous for the A1/A2 polymorphism, and all 6 (p = 0.04) samples carried the mutation within the PIN3 longer allele (A2). Reporter assays revealed higher luciferase activity in cells transfected with the plasmid containing A2 construct than A1 and control. A2/A1 ratio ranged from 1.16 for AD293 cell line (p = 0.019) to 1.59 for SW962 cell line (p = 0.0019). Moreover, bioinformatic analyses showed that PIN3 duplication stabilized secondary DNA structures - G-quadruplexes. CONCLUSION: TP53 alleles are not equivalent for their impact on the regulation of expression of TP53 mRNA. Therefore, in PIN3-heterozygous cases a single TP53 mutation of the longer allele might sufficiently destabilize its function. Secondary DNA structures such as quadruplexes can also play a role in PIN3-dependent TP53 haploinsufficiency.


Asunto(s)
Haploinsuficiencia , Intrones , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Duplicación de Gen , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos
11.
Clin Neuropathol ; 32(2): 114-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23211433

RESUMEN

The aim of our study was to evaluate the frequency of deletions on chromosomes 1, 9, 10, 14, 18 and 22 in 75 benign and 15 atypical meningiomas and correlate them with clinical findings. Paired normal and tumor DNA samples were analyzed for loss of heterozygosity (LOH), using 24 microsatellite markers and PCR techniques. Statistical analysis showed that deletions on chromosomes 14 and 18 were significantly associated with tumor grade of meningiomas (p = 0.048 and p = 0.03, respectively). In addition, we found a marginally increased frequency of LOH on chromosome 9 in atypical meningiomas (p = 0.06). Interestingly, LOH on chromosome 14 was significantly associated with tumor size (p = 0.049), as the risk of developing a tumor of more than 4 cm in diameter was 6-times the risk of developing tumor with diameter below 4 cm. The most frequent genetic abnormality in meningiomas is 22 LOH, which seems to be confirmed by the present study in which high frequency of such abnormality was observed (67%). We found associations between chromosome 22 status and histological subtype. LOH on chromosome 22 was more frequent in fibrous meningiomas than in the meningothelial variant (p = 0.001). Besides that, we found a relationship between 22 LOH status and tumor localization: the frequency of LOH in skull base-localized tumors was significantly lower compared to parasagittal meningiomas (p = 0.0004). Our results indicated that allelic loss on chromosomes 9, 10, 14, 18 and 22 may be associated with meningioma pathogenesis and progression.


Asunto(s)
Neoplasias Meníngeas/genética , Meningioma/genética , Deleción Cromosómica , Femenino , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Clasificación del Tumor
12.
Cells ; 11(12)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35741039

RESUMEN

Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos T
13.
J Oncol ; 2022: 5969536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342397

RESUMEN

Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.

14.
Stem Cell Res Ther ; 13(1): 210, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35598007

RESUMEN

Etiopathogenesis of fluoroquinolone-associated disability (FQAD) syndrome is not fully understood, yet research could progress by utilizing induced pluripotent stem cells (iPSc) from people with this syndrome. Similarly, iPSc, or rather their derivatives, could be used in their therapy, not only for FQAD but also for other disorders in which generated autologous iPSc and their derivatives might be helpful. Urine was collected from ten donors with FQAD, and reprogramming of these cells was conducted with the use of Epi5TM Episomal iPSC Reprogramming Kit. IPSc were generated in one out of ten person's urine cells. While urinary cells are considered the easiest mature cells to be reprogrammed into iPSc, the urinary cells from six consecutive donors quickly became senescent. Stable urine primary cell cultures could not be obtained from the three remaining donors. Repeated attempts to reprogram epithelial cells were not successful. During parallel studies conducted for healthy donors, reprogramming success was achieved in six out of ten cases. These data may suggest serious limitations in the regeneration system of individuals with FQAD. Consequently, it indicates that therapy with autologous iPSc derivatives may face serious difficulties in their case, still, the first iPSc cell line from a person with FQAD was established.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Reprogramación Celular , Fluoroquinolonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Plásmidos
15.
Genes (Basel) ; 13(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36553637

RESUMEN

Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to identify common and distinct pathological mechanisms present in both syndromes. For this purpose, epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore, protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were upregulated in both ciliopathies. These results provide new insights into the common and divergent pathogenic pathways between two similar genetic syndromes, particularly in relation to primary cilium function and abnormalities in cell differentiation.


Asunto(s)
Síndrome de Alstrom , Síndrome de Bardet-Biedl , Ciliopatías , Obesidad Infantil , Niño , Humanos , Síndrome de Bardet-Biedl/genética , Transcriptoma/genética , Proteómica , Obesidad Infantil/complicaciones , Síndrome de Alstrom/genética , Proteínas/genética
16.
BMC Cancer ; 11: 243, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668955

RESUMEN

BACKGROUND: Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. METHODS: Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. RESULTS: A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). CONCLUSION: We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention of the wild-type allele occurs with the same frequency as either nonsense or missense TP53 mutations.


Asunto(s)
Pérdida de Heterocigocidad/genética , Mutación Missense/genética , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Análisis Mutacional de ADN , Bases de Datos Genéticas , Humanos , Ratones , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
J Neurooncol ; 102(3): 395-407, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20803305

RESUMEN

Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor-EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor-EGFRvIII.


Asunto(s)
Neoplasias Encefálicas/patología , Receptores ErbB/metabolismo , Glioblastoma/patología , Animales , Bromodesoxiuridina/metabolismo , Adhesión Celular/fisiología , Ciclo Celular/fisiología , Proliferación Celular , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Modelos Animales , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/patología , Factores de Tiempo , Células Tumorales Cultivadas
18.
Exp Cell Res ; 315(3): 462-73, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19061885

RESUMEN

Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of betaIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors.


Asunto(s)
Astrocitos/citología , Encéfalo/citología , Linaje de la Célula , Células Madre Mesenquimatosas/citología , Adipocitos/citología , Adipocitos/metabolismo , Antígenos de Diferenciación/metabolismo , Astrocitos/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Osteoblastos/citología , Osteoblastos/fisiología
19.
PLoS One ; 15(9): e0239325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946483

RESUMEN

Mutation in isocitrate dehydrogenase 1 (IDH1R132H) occurs in various types of cancer, including low and high grade gliomas. Despite high incidence indicating its central role in tumor initiation and progression there are no targeted therapies directed against this oncogene available in the clinic. This is due to the limited understanding of the role of IDH1R132H in carcinogenesis, which is further propagated by the lack of appropriate experimental models. Moreover, proper in vitro models for analysis of gliomagenesis are required. In this study, we employed a Tet On system to generate human induced neural stem cells with doxycycline-inducible IDH1R132H. Equivalent expression of both forms of IDH1 in the presented model remains similar to that described in tumor cells. Additional biochemical analyses further confirmed tightly controlled gene regulation at protein level. Formation of a functional mutant IDH1 enzyme was supported by the production of D-2-hydroxyglutarate (D2HG). All samples tested for MGMT promoter methylation status, including parental cells, proved to be partially methylated. Analysis of biological effect of IDH1R132H revealed that cells positive for oncogene showed reduced differentation efficiency and viability. Inhibition of mutant IDH1 with selective inhibitor efficiently suppressed D2HG production as well as reversed the effect of mutant IDH1 protein on cell viability. In summary, our model constitutes a valuable platform for studies on the molecular basis and the cell of origin of IDH-mutant glioma (e.g. by editing P53 in these cells and their derivatives), as well as a reliable experimental model for drug testing.


Asunto(s)
Carcinogénesis/genética , Ensayos de Selección de Medicamentos Antitumorales , Glioma/patología , Isocitrato Deshidrogenasa/genética , Mutación , Células-Madre Neurales/citología , Diferenciación Celular , Línea Celular , Humanos
20.
J Oncol ; 2020: 6783627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774372

RESUMEN

Cellular origin of glioblastoma (GB) is constantly discussed and remains a controversial subject. Unfortunately, neurobiologists are not consistent in defining neural stem cells (NSC) complicating this issue even further. Nevertheless, some suggestions referring to GB origin can be proposed based on comparing GB to central nervous system (CNS) cells. Firstly, GB cells show in vitro differentiation pattern similar to GFAP positive neural cells, rather than classical (GFAP negative) NSC. GB cells in primary cultures become senescent in vitro, similar to GFAP positive neural progenitors, whereas classical NSC proliferate in vitro infinitely. Classical NSC apoptosis triggered by introduction of IDH1R132H undermines hypothesis stating that IDH-mutant (secondary) GB origins from these NSC. Analysis of biological role of typical IDH-wildtype (primary) GB oncogene such as EGFRvIII also favors GFAP positive cells rather than classical NSC as source of GB. Single-cell NGS and single-cell transcriptomics also suggest that GFAP positive cells are GB origin. Considering the above-mentioned and other discussed in articles data, we suggest that GFAP positive cells (astrocytes, radial glia, or GFAP positive neural progenitors) are more likely to be source of GB than classical GFAP negative NSC, and further in vitro assays should be focused on these cells. It is highly possible that several populations of tumor initiating cells (TIC) exist within GB, adjusting their phenotype and even genotype to various environmental conditions including applied therapy and periodically going through different TIC states as well as non-TIC state. This adjustment is driven by changes in number and types of amplicons. The existence of various populations of TIC would enable creating neoplastic foci in different environments and increase tumor aggressiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA