Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 70(1): 89-105, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487590

RESUMEN

Microglia, the brain's resident macrophages, actively contribute to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.


Asunto(s)
Microglía , Transmisión Sináptica , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/metabolismo , Sueño
2.
Neurobiol Dis ; 158: 105455, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358614

RESUMEN

Fatal familial insomnia (FFI) is a dominantly inherited prion disease linked to the D178N mutation in the gene encoding the prion protein (PrP). Symptoms, including insomnia, memory loss and motor abnormalities, appear around 50 years of age, leading to death within two years. No treatment is available. A ten-year clinical trial of doxycycline (doxy) is under way in healthy individuals at risk of FFI to test whether presymptomatic doxy prevents or delays the onset of disease. To assess the drug's effect in a tractable disease model, we used Tg(FFI-26) mice, which accumulate aggregated and protease-resistant PrP in their brains and develop a fatal neurological illness highly reminiscent of FFI. Mice were treated daily with 10 mg/kg doxy starting from a presymptomatic stage for twenty weeks. Doxy rescued memory deficits and restored circadian motor rhythmicity in Tg(FFI-26) mice. However, it did not prevent the onset and progression of motor dysfunction, clinical signs and progression to terminal disease. Doxy did not change the amount of aggregated and protease-resistant PrP, but reduced microglial activation in the hippocampus. Presymptomatic doxy treatment rescues cognitive impairment and the motor correlates of sleep dysfunction in Tg(FFI-26) mice but does not prevent fatal disease.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Insomnio Familiar Fatal/tratamiento farmacológico , Memoria/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Animales , Encéfalo/patología , Progresión de la Enfermedad , Insomnio Familiar Fatal/genética , Insomnio Familiar Fatal/patología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos
3.
Front Big Data ; 7: 1390467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831953

RESUMEN

Undisturbed home cage recording of mouse activity and behavior has received increasing attention in recent years. In parallel, several technologies have been developed in a bid to automate data collection and interpretation. Thanks to these expanding technologies, massive datasets can be recorded and saved in the long term, providing a wealth of information concerning animal wellbeing, clinical status, baseline activity, and subsequent deviations in case of experimental interventions. Such large datasets can also serve as a long-term reservoir of scientific data that can be reanalyzed and repurposed upon need. In this review, we present how the impact of Big Data deriving from home cage monitoring (HCM) data acquisition, particularly through Digital Ventilated Cages (DVCs), can support the application of the 3Rs by enhancing Refinement, Reduction, and even Replacement of research in animals.

4.
Sci Rep ; 13(1): 10851, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407633

RESUMEN

In this longitudinal study we compare between and within-strain variation in the home-cage spatial preference of three widely used and commercially available mice strains-C57BL/6NCrl, BALB/cAnNCrl and CRL:CD1(ICR)-starting from the first hour post cage-change until the next cage-change, for three consecutive intervals, to further profile the circadian home-cage behavioural phenotypes. Cage-change can be a stressful moment in the life of laboratory mice, since animals are disturbed during the sleeping hours and must then rapidly re-adapt to a pristine environment, leading to disruptions in normal motor patterns. The novelty of this study resides in characterizing new strain-specific biological phenomena, such as activity along the cage walls and frontality, using the vast data reserves generated by previous experimental data, thus introducing the potential and exploring the applicability of data repurposing to enhance Reduction principle when running in vivo studies. Our results, entirely obtained without the use of new animals, demonstrate that also when referring to space preference within the cage, C57BL/6NCrl has a high variability in the behavioural phenotypes from pre-puberty until early adulthood compared to BALB/cAnNCrl, which is confirmed to be socially disaggregated, and CRL:CD1(ICR) which is conversely highly active and socially aggregated. Our data also suggest that a strain-oriented approach is needed when defining frequency of cage-change as well as maximum allowed animal density, which should be revised, ideally under the EU regulatory framework as well, according to the physiological peculiarities of the strains, and always avoiding the "one size fits all" approach.


Asunto(s)
Carrera , Animales , Ratones , Estudios Longitudinales , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ritmo Circadiano/fisiología , Conducta Animal/fisiología
5.
Front Behav Neurosci ; 17: 1130055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935893

RESUMEN

Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disease caused by the abnormal expansion of CTG-repeats in the 3'-untranslated region of the Dystrophia Myotonica Protein Kinase (DMPK) gene, characterized by multisystemic symptoms including muscle weakness, myotonia, cardio-respiratory problems, hypersomnia, cognitive dysfunction and behavioral abnormalities. Sleep-related disturbances are among the most reported symptoms that negatively affect the quality of life of patients and that are present in early and adult-onset forms of the disease. DMSXL mice carry a mutated human DMPK transgene containing >1,000 CTGrepeats, modeling an early onset, severe form of DM1. They exhibit a pathologic neuromuscular phenotype and also synaptic dysfunction resulting in neurological and behavioral deficits similar to those observed in patients. Additionally, they are underweight with a very high mortality within the first month after birth presenting several welfare issues. To specifically explore sleep/rest-related behaviors of this frail DM1 mouse model we used an automated home cage-based system that allows 24/7 monitoring of their activity non-invasively. We tested male and female DMSXL mice and their wild-type (WT) littermates in Digital Ventilated Cages (DVCR) assessing activity and rest parameters on day and night for 5 weeks. We demonstrated that DMSXL mice show reduced activity and regularity disruption index (RDI), higher percentage of zero activity per each hour and longer periods of rest during the active phase compared to WT. This novel rest-related phenotype in DMSXL mice, assessed unobtrusively, could be valuable to further explore mechanisms and potential therapeutic interventions to alleviate the very common symptom of excessive daytime sleepiness in DM1 patients.

6.
EBioMedicine ; 89: 104453, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736132

RESUMEN

BACKGROUND: Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS: We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS: We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION: Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING: Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.


Asunto(s)
Conexinas , Sordera , Ictiosis , Queratitis , Animales , Masculino , Ratones , Anticuerpos , Conexinas/genética , Sordera/genética , Epidermis/metabolismo , Técnicas de Transferencia de Gen , Ictiosis/genética , Ictiosis/metabolismo , Ictiosis/patología , Queratitis/genética , Queratitis/metabolismo , Queratitis/patología , Mutación
7.
Front Vet Sci ; 10: 1281040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179329

RESUMEN

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

8.
Lab Anim (NY) ; 50(8): 215-223, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155410

RESUMEN

Mouse strains differ markedly in all behaviors, independently of their genetic background. We undertook this study to disentangle the diurnal activity and feature key aspects of three non-genetically altered mouse strains widely used in research, C57BL/6NCrl (inbred), BALB/cAnNCrl (inbred) and CRL:CD1(ICR) (outbred). With this aim, we conducted a longitudinal analysis of the spontaneous locomotor activity of the mice during a 24-h period for 2 months, in two different periods of the year to reduce the seasonality effect. Mice (males and females) were group-housed in Digital Ventilated Cages (Tecniplast), mimicking standard housing conditions in research settings and avoiding the potential bias provided in terms of locomotor activity by single housing. The recorded locomotor activity was analyzed by relying on different and commonly used circadian metrics (i.e., day and night activity, diurnal activity, responses to lights-on and lights-off phases, acrophase and activity onset and regularity disruption index) to capture key behavioral responses for each strain. Our results clearly demonstrate significant differences in the circadian activity of the three selected strains, when comparing inbred versus outbred as well as inbred strains (C57BL/6NCrl versus BALB/cAnNCrl). Conversely, males and females of the same strain displayed similar motor phenotypes; significant differences were recorded only for C57BL/6NCrl and CRL:CD1(ICR) females, which displayed higher average locomotor activity from prepuberty to adulthood. All strain-specific differences were further confirmed by an unsupervised machine learning approach. Altogether, our data corroborate the concept that each strain behaves under characteristic patterns, which needs to be taken into consideration in the study design to ensure experimental reproducibility and comply with essential animal welfare principles.


Asunto(s)
Bienestar del Animal , Locomoción , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Endogámicos , Reproducibilidad de los Resultados
9.
Front Neurosci ; 14: 896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982678

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease that affects both central and peripheral nervous system, leading to the degeneration of motor neurons, which eventually results in muscle atrophy, paralysis, and death. Sleep disturbances are common in patients with ALS, leading to even further deteriorated quality of life. Investigating methods to potentially assess sleep and rest disturbances in animal models of ALS is thus of crucial interest. We used an automated home cage monitoring system (DVC®) to capture irregular activity patterns that can potentially be associated with sleep and rest disturbances and thus to the progression of ALS in the SOD1G93A mouse model. DVC® enables non-intrusive 24/7 long term animal activity monitoring, which we assessed together with body weight decline and neuromuscular function deterioration measured by grid hanging and grip strength tests in male and female mice from 7 until 24 weeks of age. We show that as the ALS progresses over time in SOD1G93A mice, activity patterns start becoming irregular, especially during day time, with frequent activity bouts that are neither observed in control mice nor in SOD1G93A at a younger age. The increasing irregularities of activity pattern are quantitatively captured by designing a novel digital biomarker, referred to as Regularity Disruption Index (RDI). We show that RDI is a robust measure capable of detecting home cage activity patterns that could be related to rest/sleep-related disturbances during the disease progression. Moreover, the RDI rise during the early symptomatic stage parallels grid hanging and body weight decline. The non-intrusive long-term continuous monitoring of animal activity enabled by DVC® has been instrumental in discovering novel activity patterns potentially correlated, once validated, with sleep and rest disturbances in the SOD1G93A mouse model of the ALS disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA