Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vis Exp ; (211)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39373494

RESUMEN

For children with drug-resistant epilepsy (DRE), seizure freedom relies on the delineation and resection (or ablation/disconnection) of the epileptogenic zone (EZ) while preserving the eloquent brain areas. The development of a reliable and noninvasive localization method that provides clinically useful information for the localization of the EZ is, therefore, crucial to achieving successful surgical outcomes. Electric and magnetic source imaging (ESI and MSI) have been increasingly utilized in the presurgical evaluation of these patients showing promising findings in the delineation of epileptogenic as well as eloquent brain areas. Moreover, the combination of ESI and MSI into a single solution, namely electromagnetic source imaging (EMSI), performed on simultaneous high-density electroencephalography (HD-EEG) and magnetoencephalography (MEG) recordings has shown higher source localization accuracy than either modality alone. Despite these encouraging findings, such techniques are performed in only a few tertiary epilepsy centers, are rarely recorded simultaneously, and are underutilized in pediatric cohorts. This study illustrates the experimental setup for recording simultaneous MEG and HD-EEG data as well as the methodological framework for analyzing these data aiming to localize the irritative zone, the seizure onset zone, and eloquent brain areas in children with DRE. More specifically, the experimental setups are presented for (i) recording and localizing interictal and ictal epileptiform activity during sleep and (ii) recording visual-, motor-, auditory-, and somatosensory-evoked responses and mapping relevant eloquent brain areas (i.e., visual, motor, auditory, and somatosensory) during visuomotor task, as well as auditory and somatosensory stimulations. Detailed steps of the data analysis pipeline are further presented for performing EMSI as well as individual ESI and MSI using equivalent current dipole (ECD) and dynamic statistical parametric mapping (dSPM).


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Niño , Electroencefalografía/métodos , Encéfalo/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología
2.
Sci Rep ; 13(1): 9622, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316544

RESUMEN

Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.


Asunto(s)
Epilepsia Refractaria , Humanos , Niño , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/cirugía , Convulsiones/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Electrocorticografía , Factor de Crecimiento Transformador beta , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA