Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 132(3): 034304, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20095736

RESUMEN

Both fully dispersed unpolarized and polarized chemiluminescence spectra from the Ba((3)P)+N(2)O reaction have been recorded under hyperthermal laser-ablated atomic beam-Maxwellian gas conditions at three specific average collision energies E(c) in the range of 4.82-7.47 eV. A comprehensive analysis of the whole data series suggests that the A (1)Sigma(+)-->X (1)Sigma(+) band system dominates the chemiluminescence. The polarization results revealed that the BaO(A (1)Sigma(+)) product rotational alignment is insensitive to its vibrational state upsilon(') at E(c)=4.82 eV but develops into an strong negative correlation between product rotational alignment and upsilon(') at 7.47 eV. The results are interpreted in terms of a direct mechanism involving a short-range, partial electron transfer from Ba((3)P) to N(2)O which is constrained by the duration of the collision, so that the reaction has a larger probability to occur when the collision time is larger than the time needed for N(2)O bending. The latter in turn determines that, at any given E(c), collinear reactive intermediates are preferentially involved when the highest velocity components of the corresponding collision energy distributions are sampled. Moreover, the data at 4.82 eV suggest that a potential barrier to reaction which favors charge transfer to bent N(2)O at chiefly coplanar geometries is operative for most of the reactive trajectories that sample the lowest velocity components. Such a barrier would arise from the relevant ionic-covalent curve crossings occurring in the repulsive region of the covalent potential Ba((3)P)cdots, three dots, centeredN(2)O((1)Sigma(+)); from this crossing the BaO(A (1)Sigma(+)) product may be reached through mixings in the exit channel with potential energy surfaces leading most likely to the spin-allowed b (3)Pi and a (3)Sigma(+) products. The variation with increasing E(c) of both the magnitude of the average BaO(A (1)Sigma(+)) rotational alignment and the BaO(A (1)Sigma(+)) rovibrational excitation, as obtained from spectral simulations of the unpolarized chemiluminescence spectra, consistently points to additional dynamic factors, most likely the development of induced repulsive energy release as the major responsible for the angular momentum and energy disposal at the two higher E(c) studied. The results of a simplified version of the direct interaction with product repulsion-distributed as in photodissociation model do not agree with the observed average product rotational alignments, showing that a more realistic potential energy surface model will be necessary to explain the present results.

2.
J Chem Phys ; 129(14): 144303, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19045143

RESUMEN

The temperature dependence of the state-to-state vibrational relaxation rate constant (k(nu)(21-Delta nu)) for collisions between I(2)(B,nu(')=21) and He at very low kinetic energies was studied. The fluorescence from I(2)(B,nu(')=21-Delta nu(')) with Delta nu(')=1-5 indicates that in the temperature range of 0.6-8.2 K these states are populated by only one collision with He. The behavior of k(nu)(21-Delta nu) with temperature can be divided into two groups. The group with quantum changes Delta nu(')=1-3 shows scattering resonances in the low temperature region, with a general monotonical decrease of the rate constant with temperature, suggesting the importance of van der Waals interactions. This behavior is supported by the calculation of the probability of tunneling through the centrifugal barriers. For collisions in which 4-5 quanta are lost in a single event, there are no evidences of scattering resonances and the values of the relaxation rate constants could be determined only at the highest temperatures of this study. This suggests that relaxation occurs via impulsive collisions. The branching ratios for each channel are also temperature dependent and this behavior also suggests that the energy transfer mechanism changes with Delta nu(').

3.
J Chem Phys ; 127(6): 064309, 2007 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-17705598

RESUMEN

The chemiluminescent reaction Ba(6s6p (3)P)+N(2)O was studied at an average collision energy of 1.56 eV in a beam-gas arrangement. Ba((3)P) was produced by laser ablation of barium, which resulted in a broad collision energy distribution extending up to approximately 5.7 eV. A series of experiments was made to extract the Ba((3)P) contribution to chemiluminescence from that corresponding to Ba 6s(2) (1)S0 and 6s5d (3)D, which are the other two most populated states in the atomic beam. The fully dispersed polarized chemiluminescence spectra at 400-600 nm from the title reaction were recorded and assigned to a BaO molecule excited in the A (1)Sigma+ level. In addition, the average and wavelength-resolved degrees of polarization associated to the parallel BaO(A (1)Sigma+-->X (1)Sigma+) emission are reported. The analysis of the average polarization degree show that the BaO(A (1)Sigma+) product is significantly aligned, suggesting that the reaction mechanism is predominantly direct. The product rotational alignment was found to depend markedly on the emission wavelength, which revealed a negative correlation with the BaO(A (1)Sigma+) product vibrational state. On the basis of experimental and theoretical investigations on the reactions of N(2)O with both the (1)S0, (3)D, and (1)P1 states of Ba and the lighter group 2 atoms, it is suggested that the Ba((3)P) reaction involves a charge transfer at relatively short reagent separations and that restricted collision geometries at the highest velocity components of the broad distribution are necessary to rationalize the data.

4.
Anal Chim Acta ; 579(1): 11-6, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17723721

RESUMEN

We present an analytical procedure based on laser ablation mass spectrometry (LAMS) in order to detect and quantify arsenic and calcium in soil samples and we analyze the diverse factors that influence the precision of LAMS, such as laser fluence and matrix effect. The results indicate that a Zn matrix is a good choice for the analysis of those metals in soil samples. This work also provides a method for the direct determination of As in soil samples whose concentrations are lower than 100 ppm with a 70 ppm minimum detection limits (MDL).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA