Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014466

RESUMEN

Euphorbia resinifera latex has been extensively utilized in traditional medicine due to its range of bioactivities. Chromatographic separations on silica gel of ethanol extract of E. resinifera latex led to the development of a new procedure for isolating resiniferatoxin (4) via dried E. resinifera latex and the identification of nine compounds. Among these, catechol (7), protocatechuic acid (8) and 3,4-dihydroxyphenylacetic acid (9), known phenolic compounds, were identified for the first time in E. resinifera latex. Herein we investigated the effects of major compounds of the latex of E. resinifera on the yeast Saccharomyces cerevisiae, on the growth of Aspergillus carbonarius, a widespread fungal contaminant, and on the breast cancer cell line MCF7 as well as on MCF10A normal breast cells. 12-deoxyphorbol-13-isobutyrate-20-acetate (2) had an inhibiting effect on the growth of A. carbonarius, and 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) showed a negative effect on yeast cell growth and also a cytotoxic effect on breast cancer cell line MCF7, but not on MCF10A cells. Deglucosyl euphorbioside A (5) and euphorbioside A (6) showed a discoloration effect that was possibly related to mitochondrial functionality in yeast, and also cytotoxicity only on the cancer cell line that was tested. Interestingly, treatment of MCF7 cells with 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) and deglucosyl euphorbioside A (5) not only led to a specific cytotoxic effect but also to the increase in the level of intracellular ROS.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Diterpenos , Euphorbia , Antifúngicos , Antineoplásicos/farmacología , Diterpenos/química , Euphorbia/química , Femenino , Humanos , Látex/química , Saccharomyces cerevisiae
2.
Environ Microbiol ; 23(7): 3957-3969, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200556

RESUMEN

Earth's microbial biosphere extends down through the crust and much of the subsurface, including those microbial ecosystems located within cave systems. Here, we elucidate the microbial ecosystems within anthropogenic 'caves'; the Iron-Age, subterranean tombs of central Italy. The interior walls of the rock (calcium-rich macco) were painted ~2500 years ago and are covered with CaCO3 needles (known as moonmilk). The aims of the current study were to: identify biological/geochemical/biophysical determinants of and characterize bacterial communities involved in CaCO3 precipitation; challenge the maxim that biogenic activity necessarily degrades surfaces; locate the bacterial cells that are the source of the CaCO3 precipitate; and gain insight into the kinetics of moonmilk formation. We reveal that this environment hosts communities that consist primarily of bacteria that are mesophilic for temperature and xerotolerance (including Actinobacteria, Bacteroidetes and Proteobacteria); is populated by photosynthetic Cyanobacteria exhibiting heterotrophic nutrition (Calothrix and Chroococcidiopsis); and has CaCO3 precipitating on the rock surfaces (confirmation that this process is biogenic) that acts to preserve rather than damage the painted surface. We also identified that some community members are psychrotolerant (Polaromonas), acidotolerant or acidophilic (members of the Acidobacteria), or resistant to ionizing radiation (Brevundimonas and Truepera); elucidate the ways in which microbiology impacts mineralogy and vice versa; and reveal that biogenic formation of moonmilk can occur rapidly, that is, over a period of 10 to 56 years. We discuss the paradox that these ecosystems, that are for the most part in the dark and lack primary production, are apparently highly active, biodiverse and biomass-rich.


Asunto(s)
Cianobacterias , Ecosistema , Acidobacteria , Cuevas , Civilización
3.
Environ Microbiol ; 23(7): 3335-3344, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33817931

RESUMEN

Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Ecosistema , Microbiología Ambiental , Humanos
4.
FASEB J ; 34(4): 4870-4889, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32077151

RESUMEN

The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex, since it includes a conserved enzymatic core but lacks non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S. cerevisiae strain deleted in the CSN5/RRI1 gene, encoding to the CSN catalytic subunit, revealed a downregulation of genes involved in lipid metabolism. We now show that the S. cerevisiae CSN holocomplex is essential for cellular lipid homeostasis. Defects in CSN assembly or activity lead to decreased quantities of ergosterol and unsaturated fatty acids (UFA); vacuole defects; diminished lipid droplets (LDs) size; and to accumulation of endoplasmic reticulum (ER) stress. The molecular mechanism behind these findings depends on CSN involvement in upregulating mRNA expression of SPT23. Spt23 is a novel activator of lipid desaturation and ergosterol biosynthesis. Our data reveal for the first time a functional link between the CSN holocomplex and Spt23. Moreover, CSN-dependent upregulation of SPT23 transcription is necessary for the fine-tuning of lipid homeostasis and for cellular health.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Ergosterol/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Complejo del Señalosoma COP9/genética , Estrés del Retículo Endoplásmico , Ergosterol/genética , Ácidos Grasos Insaturados/genética , Eliminación de Gen , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
5.
J Enzyme Inhib Med Chem ; 35(1): 129-137, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31694426

RESUMEN

The 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme of the mevalonate pathway for the synthesis of cholesterol in mammals (ergosterol in fungi), is inhibited by statins, a class of cholesterol lowering drugs. Indeed, statins are in a wide medical use, yet statins treatment could induce side effects as hepatotoxicity and myopathy in patients. We used Saccharomyces cerevisiae as a model to investigate the effects of statins on mitochondria. We demonstrate that statins are active in S.cerevisiae by lowering the ergosterol content in cells and interfering with the attachment of mitochondrial DNA to the inner mitochondrial membrane. Experiments on murine myoblasts confirmed these results in mammals. We propose that the instability of mitochondrial DNA is an early indirect target of statins.


Asunto(s)
ADN Mitocondrial/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/química , ADN Mitocondrial/química , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Membranas Mitocondriales/química
6.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810747

RESUMEN

Hypoxia is defined as the decline of oxygen availability, depending on environmental supply and cellular consumption rate. The decrease in O2 results in reduction of available energy in facultative aerobes. The response and/or adaptation to hypoxia and other changing environmental conditions can influence the properties and functions of membranes by modifying lipid composition. In the yeast Kluyveromyces lactis, the KlMga2 gene is a hypoxic regulatory factor for lipid biosynthesis-fatty acids and sterols-and is also involved in glucose signaling, glucose catabolism and is generally important for cellular fitness. In this work we show that, in addition to the above defects, the absence of the KlMGA2 gene caused increased resistance to oxidative stress and extended lifespan of the yeast, associated with increased expression levels of catalase and SOD genes. We propose that KlMga2 might also act as a mediator of the oxidative stress response/adaptation, thus revealing connections among hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism in K. lactis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Kluyveromyces/fisiología , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Catalasa/genética , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipoxia , Kluyveromyces/genética , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Factores de Transcripción/genética
7.
Sci Eng Ethics ; 23(2): 365-374, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27325416

RESUMEN

In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.


Asunto(s)
Investigación de Doble Uso/ética , Ética en Investigación , Biología Sintética/ética , Investigadores/ética , Saccharomyces cerevisiae/genética , Biología Sintética/tendencias
8.
Microbiology (Reading) ; 162(8): 1435-1445, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27233577

RESUMEN

Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in Kluyveromyces lactis. To this purpose, we have deleted the genes FAD2 and FAD3 encoding Δ12 and ω3 desaturases in Kluyveromyces lactis, thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene KlOLE1 resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes KlOLE1, FAD2 and FAD3 and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Metabolismo Energético/fisiología , Ácido Graso Desaturasas/genética , Kluyveromyces/enzimología , Anaerobiosis , Membrana Celular/metabolismo , Retículo Endoplásmico/enzimología , Metabolismo Energético/genética , Ácido Graso Desaturasas/metabolismo , Fermentación/genética , Fermentación/fisiología , Eliminación de Gen , Kluyveromyces/genética , Estearoil-CoA Desaturasa
9.
J Enzyme Inhib Med Chem ; 31(6): 1632-7, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27028668

RESUMEN

The CSN complex plays a key role in various cellular pathways: through a metalloprotease activity of its Csn5 deneddylating enzyme, it regulates the activity of Cullin-RING ligases (CRLs). Indeed, Csn5 has been found amplified in many tumors, but, due to its pleiotropic effects, it is difficult to dissect its function and the involvement in cancer progression. Moreover, while growing evidences point to the neddylation function as a good target for drug development; specific inhibitors have not yet been developed for the CSN. Here, we propose the yeast Saccharomyces cerevisiae as a model system to screen libraries of small molecules as inhibitors of cullins deneddylation, taking advantage of the unique feature of this organism to survive without a functional CSN5 gene and to accumulate a fully neddylated cullin substrate. By combining molecular modeling and simple genetic tools, we were able to identify two small molecular fragments as selective inhibitors of Csn5 deneddylation function.


Asunto(s)
Metaloendopeptidasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Complejo del Señalosoma COP9 , Simulación de Dinámica Molecular
10.
J Biol Chem ; 289(48): 33137-48, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25320081

RESUMEN

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células CHO , Cricetinae , Cricetulus , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN/genética , ARN/metabolismo , ARN Mitocondrial , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
FEMS Yeast Res ; 15(5): fov028, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26019145

RESUMEN

In the yeast Kluyveromyces lactis, the inactivation of structural or regulatory glycolytic and fermentative genes generates obligate respiratory mutants which can be characterized by sensitivity to the mitochondrial drug antimycin A on glucose medium (Rag(-) phenotype). Rag(-) mutations can occasionally be generated by the inactivation of genes not evidently related to glycolysis or fermentation. One such gene is the hypoxic regulatory gene KlMGA2. In this work, we report a study of the many defects, in addition to the Rag(-) phenotype, generated by KlMGA2 deletion. We analyzed the fermentative and respiratory metabolism, mitochondrial functioning and morphology in the Klmga2Δ strain. We also examined alterations in the regulation of the expression of lipid biosynthetic genes, in particular fatty acids, ergosterol and cardiolipin, under hypoxic and cold stress and the phenotypic suppression by unsaturated fatty acids of the deleted strain. Results indicate that, despite the fact that the deleted mutant strain had a typical glycolytic/fermentative phenotype and KlMGA2 is a hypoxic regulatory gene, the deletion of this gene generated defects linked to mitochondrial functions suggesting new roles of this protein in the general regulation and cellular fitness of K. lactis. Supplementation of unsaturated fatty acids suppressed or modified these defects suggesting that KlMga2 modulates membrane functioning or membrane-associated functions, both cytoplasmic and mitochondrial.


Asunto(s)
Proteínas Bacterianas/genética , Ácidos Grasos Insaturados/metabolismo , Fermentación/genética , Glucosa/metabolismo , Kluyveromyces/metabolismo , Consumo de Oxígeno/genética , Factores de Transcripción/genética , Antifúngicos/farmacología , Antimicina A/farmacología , Cardiolipinas/metabolismo , Hipoxia de la Célula/fisiología , Respuesta al Choque por Frío/fisiología , Ergosterol/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Glucólisis/genética , Kluyveromyces/efectos de los fármacos , Kluyveromyces/genética , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Transcripción Genética/genética
12.
Microb Cell Fact ; 13: 83, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24906383

RESUMEN

BACKGROUND: Microbial lipids represent a valuable alternative feedstock for biodiesel production when oleaginous microbes are cultured with inexpensive substrates in processes exhibiting high yield and productivity. In this perspective, crude glycerol is among the most promising raw materials for lipid production, because it is the costless residual of biodiesel production. Thus, cultivation of oleaginous yeasts in glycerol-based media is attracting great interest and natural biodiversity is increasingly explored to identify novel oleaginous species recycling this carbon source for growth and lipid production. RESULTS: Thirty-three yeasts strains belonging to 19 species were screened for the ability to grow and produce intracellular lipids in a pure glycerol-based medium with high C/N ratio. A minority of them consumed most of the glycerol and generated visible lipid bodies. Among them, Candida freyschussii ATCC 18737 was selected, because it exhibited the highest lipid production and glycerol conversion yield. Lipid production in this strain was positively affected by the increase of C/N ratio, but growth was inhibited by glycerol concentration higher than 40 g/L. In batch cultures, the highest lipid production (4.6 g/L), lipid content of biomass (33% w/w), and lipid volumetric productivity (0.15 g/L/h) were obtained with 40 g/L glycerol, during the course of a 30-h process. Fed-batch cultivation succeeded in preventing substrate inhibition and in achieving a high cell-density culture. The improved lipid production and volumetric productivity reached the remarkable high level of 28 g/L and 0.28 g/L/h, respectively. The lipids accumulated by C. freyschussii ATCC 18737 have similar fatty acid composition of plant oil indicating their potential use as biodiesel feedstock. Calculated physicochemical properties of a biodiesel produced with the lipids from C. freyschussii ATCC 18737 are expected to meet the European and American standards, being equal to those of rapeseed and palm biodiesel. CONCLUSIONS: C. freyschussii ATCC 18737 could be considered an interesting microorganism for utilization in biofuel industry. Cultivation of this yeast in media containing crude glycerol should be investigated deeper in order to evaluate whether it may find application in the valorization of the waste of biodiesel manufacturing.


Asunto(s)
Candida/metabolismo , Glicerol/metabolismo , Microbiología Industrial , Lípidos/biosíntesis , Técnicas de Cultivo Celular por Lotes , Biocombustibles , Candida/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Glicerol/química , Éteres Metílicos/metabolismo
13.
Metabolites ; 13(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37110165

RESUMEN

We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4 tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced genes which are required for the metabolic changes, suggesting a role for histone methylation in their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2 and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2 demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the absence of Jhd2 by decreasing Set1 methylation activity.

14.
Front Psychol ; 14: 1194644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799528

RESUMEN

This study proposes a psychometric validation of the Italian version of the Child-Parent Relationship Scale (CPRS) developed by Pianta in 1992. Based on attachment theory, the scale assesses parents' relationship perceptions with their own child and comprises three scales: Closeness, Conflict, and Dependency. A sample of 501 parents (188 fathers and 313 mothers) completed 30 items of the Italian version of the Child-Parent Relationship Scale (CPRS-I) online, but only 437 answered 85% of the entire protocol; hence, the analyses only focused on 437 participants. The first analysis of the original theoretical model revealed poor fit, item loadings, and internal consistency. Therefore, a follow-up analysis was conducted. Exploratory and confirmatory analyses with a split sample (EFA = 218; CFA = 219) confirmed the original three-factor structure of the Italian sample, although some items were eliminated. The validity and reliability of the Italian version of the CPRS-I were also verified by correlating the above three factors with measures of adult attachment styles and children's internalizing and externalizing behaviors. The CPRS-I showed significant correlations with all tested constructs, in line with those found by Driscoll and Pianta for the short form of the scale. Our results confirm that the CPRS-I has the same structure as the original scale; therefore, it can be a useful tool for assessing parents' perceptions of their relationship with their children. The implications for educational and clinical settings are also discussed.

15.
Carbohydr Res ; 534: 108984, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984279

RESUMEN

Iminosugars' similarity to carbohydrates determines the exceptional potential for this class of polyhydroxylated alkaloids to serve as potential drug candidates for a wide variety of diseases such as diabetes, lysosomal storage diseases, cancer, bacterial and viral infections. The presence of lipophilic substituents has a significant impact on their biological activities. This work reports the synthesis of three new pyrrolidine lipophilic derivatives O-alkylated in C-6 position. The biological activities of our iminosugars' collection were tested in two cancer cell lines and, due to the pharmaceutical potential, in the model yeast system Saccharomyces cerevisiae to assess their toxicity.


Asunto(s)
Iminoazúcares , Iminoazúcares/farmacología , Inhibidores Enzimáticos
16.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38231986

RESUMEN

In recent years, Electrospinning (ES) has been revealed to be a straightforward and innovative approach to manufacture functionalized nanofiber-based membranes with high filtering performance against fine Particulate Matter (PM) and proper bioactive properties. These qualities are useful for tackling current issues from bacterial contamination on Personal Protective Equipment (PPE) surfaces to the reusability of both disposable single-use face masks and respirator filters. Despite the fact that the conventional ES process can be upscaled to promote a high-rate nanofiber production, the number of research works on the design of hybrid materials embedded in electrospun membranes for face mask application is still low and has mainly been carried out at the laboratory scale. In this work, a multi-needle ES was employed in a continuous processing for the manufacturing of both pristine Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) nanofibers and functionalized membrane ones embedded with TiO2 Nanoparticles (NPs) (PVDF-HFP@TiO2). The nanofibers were collected on Polyethylene Terephthalate (PET) nonwoven spunbond fabric and characterized by using Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman spectroscopy, and Atomic Force Microscopy (AFM) analysis. The photocatalytic study performed on the electrospun membranes proved that the PVDF-HFP@TiO2 nanofibers provide a significant antibacterial activity for both Staphylococcus aureus (~94%) and Pseudomonas aeruginosa (~85%), after only 5 min of exposure to a UV-A light source. In addition, the PVDF-HFP@TiO2 nanofibers exhibit high filtration efficiency against submicron particles (~99%) and a low pressure drop (~3 mbar), in accordance with the standard required for Filtering Face Piece masks (FFPs). Therefore, these results aim to provide a real perspective on producing electrospun polymer-based nanotextiles with self-sterilizing properties for the implementation of advanced face masks on a large scale.

18.
Microorganisms ; 10(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36557562

RESUMEN

Astronauts remote from Earth, not least those who will inhabit the Moon or Mars, are vulnerable to disease due to their reduced immunity, isolation from clinical support, and the disconnect from any buffering capacity provided by the Earth. Here, we explore potential risks for astronaut health, focusing on key aspects of the biology of Bacillus anthracis and other anthrax-like bacilli. We examine aspects of Bacillus cereus group genetics in relation to their evolutionary biology and pathogenicity; a new clade of the Bacillus cereus group, close related to B. anthracis, has colonized the International Space Station (ISS), is still present, and could in theory at least acquire pathogenic plasmids from the other B. cereus group strains. The main finding is that the genomic sequence alignments of the B. cereus group ISS strains revealed a high sequence identity, indicating they originated from the same strain and that a close look to the genetic variations among the strains suggesting they lived, or they are living, in a vegetative form in the ISS enough time to accumulate genetic variations unique for each single strains.

19.
J Clin Endocrinol Metab ; 107(5): 1346-1356, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34971397

RESUMEN

CONTEXT: The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE: To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS: The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS: A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION: We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


Asunto(s)
Hiperinsulinismo Congénito , Hiperamonemia , Hiperinsulinismo , Hiperinsulinismo Congénito/genética , Glutamato Deshidrogenasa/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglucemia , Mutación , Nucleótidos
20.
J Cell Sci ; 122(Pt 20): 3673-83, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19773362

RESUMEN

To understand the processes underlying organelle function, dynamics and inheritance, it is necessary to identify and characterize the regulatory components involved. Recently in yeast and mammals, proteins of the membrane fission machinery (Dnm1-Mdv1-Caf4-Fis1 in yeast and DLP1-FIS1 in human) have been shown to have a dual localization on mitochondria and peroxisomes, where they control mitochondrial fission and peroxisome division. Here, we show that whereas vacuole fusion is regulated by the proteasome degradation function, mitochondrial fission and peroxisomal division are not controlled by the proteasome activity but rather depend on a new function of the proteasomal lid subunit Rpn11. Rpn11 was found to regulate the Fis1-dependent fission machinery of both organelles. These findings indicate a unique role of the Rpn11 protein in mitochondrial fission and peroxisomal proliferation that is independent of its role in proteasome-associated deubiquitylation.


Asunto(s)
Orgánulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Glucosa/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Ácido Oléico/farmacología , Orgánulos/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA