Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 49(2): 499-507, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30635987

RESUMEN

BACKGROUND: Field inhomogeneities in MRI caused by interactions between the radiofrequency field and the patient anatomy can lead to artifacts and contrast variations, consequently degrading the overall image quality and thereby compromising diagnostic value of the images. PURPOSE: To develop an efficient free-breathing and motion-robust B1+ mapping method that allows for the investigation of spatial homogeneity of the transmitted radiofrequency field in the myocardium at 3.0T. Three joint approaches are used to adapt the dual refocusing echo acquisition mode (DREAM) sequence for cardiac applications: (1) electrocardiograph triggering; (2) a multi-snapshot undersampling scheme, which relies on the Golden Ratio, to accelerate the acquisition; and (3) motion-compensation based on low-resolution images acquired in each snapshot. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Eurospin II T05 system, torso phantom, and five healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T/DREAM. ASSESSMENT: The proposed method was compared with the Bloch-Siegert shift (BSS) method and validated against the standard DREAM sequence. Cardiac B1+ maps were obtained in free-breathing and breath-hold as a proof of concept of the in vivo performance of the proposed method. STATISTICAL TESTS: Mean and standard deviation (SD) values were analyzed for six standard regions of interest within the myocardium. Repeatability was assessed in terms of SD and coefficient of variation. RESULTS: Phantom results indicated low deviation from the BSS method (mean difference = 3%). Equivalent B1+ distributions for free-breathing and breath-hold in vivo experiments demonstrated the motion robustness of this method with good repeatability (SD < 0.05). The amount of B1+ variations was found to be 26% over the myocardium within a short axis slice. DATA CONCLUSION: The feasibility of a cardiac B1+ mapping method with high spatial resolution in a reduced scan time per trigger was demonstrated. The free-breathing characteristic could be beneficial to determine shim components for multi-channel systems, currently limited to two for a single breath-hold. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:499-507.


Asunto(s)
Electrocardiografía , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética , Imagen por Resonancia Magnética , Adulto , Algoritmos , Artefactos , Contencion de la Respiración , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Movimiento (Física) , Miocardio/patología , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados , Respiración
2.
Nanoscale ; 14(24): 8789-8796, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35678469

RESUMEN

The potential of magnetic nanoparticles for acting as efficient catalysts, imaging tracers or heating mediators relays on their superparamagnetic behaviour under alternating magnetic fields. In spite of the relevance of this magnetic phenomenon, the identification of specific fingerprints to unequivocally assign superparamagnetic behaviour to nanomaterials is still lacking. Herein, we report on novel experimental and theoretical evidences related to the superparamagnetism observed in magnetic iron oxide nanoparticle suspensions at room temperature. AC magnetization measurements in a broad field frequency range from mHz to kHz and field intensities up to 40 kA m-1 unambiguously demonstrate the transition from superparamagnetic to blocked states at room temperature. Our experimental observations are supported by a theoretical model based on the stochastic Landau-Liftshitz-Gilbert equation. An empirical expression is proposed to determine the effective magnetic anisotropy from the field frequency value beyond which AC magnetization shows hysteretic behaviour. Our results significantly improve the understanding and description of the superparamagnetism of iron oxide nanoparticles, paving the way towards a more efficient exploitation of their unique magnetic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA