Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioinformatics ; 40(Suppl 2): ii182-ii189, 2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230696

RESUMEN

MOTIVATION: Cancer is a very heterogeneous disease that can be difficult to treat without addressing the specific mechanisms driving tumour progression in a given patient. High-throughput screening and sequencing data from cancer cell-lines has driven many developments in drug development, however, there are important aspects crucial to precision medicine that are often overlooked, namely the inherent differences between tumours in patients and the cell-lines used to model them in vitro. Recent developments in transfer learning methods for patient and cell-line data have shown progress in translating results from cell-lines to individual patients in silico. However, transfer learning can be forceful and there is a risk that clinically relevant patterns in the omics profiles of patients are lost in the process. RESULTS: We present MODAE, a novel deep learning algorithm to integrate omics profiles from cell-lines and patients for the purposes of exploring precision medicine opportunities. MODAE implements patient survival prediction as an additional task in a drug-sensitivity transfer learning schema and aims to balance autoencoding, domain adaptation, drug-sensitivity prediction, and survival prediction objectives in order to better preserve the heterogeneity between patients that is relevant to survival. While burdened with these additional tasks, MODAE performed on par with baseline survival models, but struggled in the drug-sensitivity prediction task. Nevertheless, these preliminary results were promising and show that MODAE provides a novel AI-based method for prioritizing drug treatments for high-risk patients. AVAILABILITY AND IMPLEMENTATION: https://github.com/UEFBiomedicalInformaticsLab/MODAE.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Algoritmos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Biología Computacional/métodos
2.
PLoS Comput Biol ; 20(8): e1012275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102448

RESUMEN

Recent research on multi-view clustering algorithms for complex disease subtyping often overlooks aspects like clustering stability and critical assessment of prognostic relevance. Furthermore, current frameworks do not allow for a comparison between data-driven and pathway-driven clustering, highlighting a significant gap in the methodology. We present the COPS R-package, tailored for robust evaluation of single and multi-omics clustering results. COPS features advanced methods, including similarity networks, kernel-based approaches, dimensionality reduction, and pathway knowledge integration. Some of these methods are not accessible through R, and some correspond to new approaches proposed with COPS. Our framework was rigorously applied to multi-omics data across seven cancer types, including breast, prostate, and lung, utilizing mRNA, CNV, miRNA, and DNA methylation data. Unlike previous studies, our approach contrasts data- and knowledge-driven multi-view clustering methods and incorporates cross-fold validation for robustness. Clustering outcomes were assessed using the ARI score, survival analysis via Cox regression models including relevant covariates, and the stability of the results. While survival analysis and gold-standard agreement are standard metrics, they vary considerably across methods and datasets. Therefore, it is essential to assess multi-view clustering methods using multiple criteria, from cluster stability to prognostic relevance, and to provide ways of comparing these metrics simultaneously to select the optimal approach for disease subtype discovery in novel datasets. Emphasizing multi-objective evaluation, we applied the Pareto efficiency concept to gauge the equilibrium of evaluation metrics in each cancer case-study. Affinity Network Fusion, Integrative Non-negative Matrix Factorization, and Multiple Kernel K-Means with linear or Pathway Induced Kernels were the most stable and effective in discerning groups with significantly different survival outcomes in several case studies.


Asunto(s)
Algoritmos , Biología Computacional , Neoplasias , Humanos , Análisis por Conglomerados , Neoplasias/genética , Neoplasias/clasificación , Biología Computacional/métodos , Metilación de ADN/genética , MicroARNs/genética , Genómica/métodos , Programas Informáticos , Análisis de Supervivencia , Pronóstico , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Variaciones en el Número de Copia de ADN/genética , Multiómica
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396389

RESUMEN

Typical clustering analysis for large-scale genomics data combines two unsupervised learning techniques: dimensionality reduction and clustering (DR-CL) methods. It has been demonstrated that transforming gene expression to pathway-level information can improve the robustness and interpretability of disease grouping results. This approach, referred to as biological knowledge-driven clustering (BK-CL) approach, is often neglected, due to a lack of tools enabling systematic comparisons with more established DR-based methods. Moreover, classic clustering metrics based on group separability tend to favor the DR-CL paradigm, which may increase the risk of identifying less actionable disease subtypes that have ambiguous biological and clinical explanations. Hence, there is a need for developing metrics that assess biological and clinical relevance. To facilitate the systematic analysis of BK-CL methods, we propose a computational protocol for quantitative analysis of clustering results derived from both DR-CL and BK-CL methods. Moreover, we propose a new BK-CL method that combines prior knowledge of disease relevant genes, network diffusion algorithms and gene set enrichment analysis to generate robust pathway-level information. Benchmarking studies were conducted to compare the grouping results from different DR-CL and BK-CL approaches with respect to standard clustering evaluation metrics, concordance with known subtypes, association with clinical outcomes and disease modules in co-expression networks of genes. No single approach dominated every metric, showing the importance multi-objective evaluation in clustering analysis. However, we demonstrated that, on gene expression data sets derived from TCGA samples, the BK-CL approach can find groupings that provide significant prognostic value in both breast and prostate cancers.


Asunto(s)
Biomarcadores , Biología Computacional/métodos , Minería de Datos , Susceptibilidad a Enfermedades , Algoritmos , Análisis por Conglomerados , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Flujo de Trabajo
4.
Health Res Policy Syst ; 18(1): 36, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245481

RESUMEN

BACKGROUND: Evidence-informed decision-making and better use of scientific information in societal decisions has been an area of development for decades but is still topical. Decision support work can be viewed from the perspective of information collection, synthesis and flow between decision-makers, experts and stakeholders. Open policy practice is a coherent set of methods for such work. It has been developed and utilised mostly in Finnish and European contexts. METHODS: An overview of open policy practice is given, and theoretical and practical properties are evaluated based on properties of good policy support. The evaluation is based on information from several assessments and research projects developing and applying open policy practice and the authors' practical experiences. The methods are evaluated against their capability of producing quality of content, applicability and efficiency in policy support as well as how well they support close interaction among participants and understanding of each other's views. RESULTS: The evaluation revealed that methods and online tools work as expected, as demonstrated by the assessments and policy support processes conducted. The approach improves the availability of information and especially of relevant details. Experts are ambivalent about the acceptability of openness - it is an important scientific principle, but it goes against many current research and decision-making practices. However, co-creation and openness are megatrends that are changing science, decision-making and the society at large. Against many experts' fears, open participation has not caused problems in performing high-quality assessments. On the contrary, a key challenge is to motivate and help more experts, decision-makers and citizens to participate and share their views. Many methods within open policy practice have also been widely used in other contexts. CONCLUSIONS: Open policy practice proved to be a useful and coherent set of methods. It guided policy processes toward a more collaborative approach, whose purpose was wider understanding rather than winning a debate. There is potential for merging open policy practice with other open science and open decision process tools. Active facilitation, community building and improving the user-friendliness of the tools were identified as key solutions for improving the usability of the method in the future.


Asunto(s)
Toma de Decisiones , Formulación de Políticas , Política de Salud , Humanos , Proyectos de Investigación , Red Social
5.
Sci Rep ; 14(1): 10626, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724670

RESUMEN

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Matriz Extracelular , Regulación Neoplásica de la Expresión Génica , Ácido Hialurónico , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Ácido Hialurónico/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Pronóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas/genética , Transcriptoma , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA