Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 352(2): 228-42, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21256839

RESUMEN

In Drosophila, like in humans, Dystrophin Glycoprotein Complex (DGC) deficiencies cause a life span shortening disease, associated with muscle dysfunction. We performed the first in vivo genetic interaction screen in ageing dystrophic muscles and identified genes that have not been shown before to have a role in the development of muscular dystrophy and interact with dystrophin and/or dystroglycan. Mutations in many of the found interacting genes cause age-dependent morphological and heat-induced physiological defects in muscles, suggesting their importance in the tissue. Majority of them is phylogenetically conserved and implicated in human disorders, mainly tumors and myopathies. Functionally they can be divided into three main categories: proteins involved in communication between muscle and neuron, and interestingly, in mechanical and cellular stress response pathways. Our data show that stress induces muscle degeneration and accelerates age-dependent muscular dystrophy. Dystrophic muscles are already compromised; and as a consequence they are less adaptive and more sensitive to energetic stress and to changes in the ambient temperature. However, only dystroglycan, but not dystrophin deficiency causes extreme myodegeneration induced by energetic stress suggesting that dystroglycan might be a component of the low-energy pathway and act as a transducer of energetic stress in normal and dystrophic muscles.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Distroglicanos/genética , Distroglicanos/metabolismo , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Estrés Fisiológico , Animales , Secuencia de Bases , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Distroglicanos/antagonistas & inhibidores , Distroglicanos/deficiencia , Distrofina/antagonistas & inhibidores , Distrofina/deficiencia , Femenino , Genes de Insecto , Humanos , Masculino , Células Musculares/metabolismo , Distrofia Muscular Animal/etiología , Mutación , Interferencia de ARN , Transducción de Señal
2.
BMC Neurosci ; 12: 93, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21943192

RESUMEN

BACKGROUND: The Dystrophin Glycoprotein Complex (DGC) is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys) and Dystroglycan (Dg) are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a Drosophila model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s) in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing Drosophila brain and eye. RESULTS: Given that disruption of Dys and Dg leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in chif, CG34400, Nrk, Lis1, capt and Cam cause improper axon path-finding and loss of SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 and Cam cause shortened rhabdomere lengths. We determined that Nrk, mbl, capt and Cam genetically interact with Dys and/or Dg in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics. CONCLUSIONS: Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Distroglicanos/metabolismo , Distrofina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Axones/patología , Axones/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Distroglicanos/genética , Distroglicanos/fisiología , Distrofina/genética , Distrofina/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Células Fotorreceptoras de Invertebrados/patología , Células Fotorreceptoras de Invertebrados/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
J Vis Exp ; (46)2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21206479

RESUMEN

The molecular characterization of muscular dystrophies and myopathies in humans has revealed the complexity of muscle disease and genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into muscle physiology. Therefore, identifying and characterizing molecular mechanisms that underlie muscle damage is critical. The structure of adult Drosophila multi-fiber muscles resemble vertebrate striated muscles (1) and the genetic tractability of Drosophila has made it a great system to analyze dystrophic muscle morphology and characterize the processes affecting muscular function in ageing adult flies (2). Here we present the histological technique for preparing paraffin-embedded and frozen sections of Drosophila thoracic muscles. These preparations allow for the tissue to be stained with classical histological stains and labeled with protein detecting dyes, and specifically cryosections are ideal for immunohistochemical detection of proteins in intact muscles. This allows for analysis of muscle tissue structure, identification of morphological defects, and detection of the expression pattern for muscle/neuron-specific proteins in Drosophila adult muscles. These techniques can also be slightly modified for sectioning of other body parts.


Asunto(s)
Drosophila/anatomía & histología , Músculo Esquelético/anatomía & histología , Adhesión en Parafina/métodos , Animales , Drosophila/fisiología , Músculo Esquelético/fisiología , Coloración y Etiquetado/métodos , Tórax/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA