Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Small ; 20(15): e2306832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009745

RESUMEN

Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm-1 can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than Li6PS5Cl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.

2.
Inorg Chem ; 63(20): 9184-9194, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722234

RESUMEN

We report a new nickel hydroxyfluoride diaspore Ni(OH)F prepared using hydrothermal synthesis from NiCl2·6H2O and NaF. Magnetic characterization reveals that, contrary to other reported transition-metal hydroxyfluoride diaspores, Ni(OH)F displays weak ferromagnetism below the magnetic ordering temperature. To understand this difference, neutron diffraction is used to determine the long-range magnetic structure. The magnetic structure is found to be distinct from those reported for other hydroxyfluoride diaspores and shows an antiferromagnetic spin ordering in which ferromagnetic canting is allowed by symmetry. Furthermore, neutron powder diffraction on a deuterated sample, Ni(OD)F, reveals partial anion ordering that is distinctive to what has previously been reported for Co(OH)F and Fe(OH)F. Density functional theory calculations show that OH/F ordering can have a directing influence on the lowest energy magnetic ground state. Our results point toward a subtle interplay between the sign of magnetic exchange interactions, the electronic configuration, and anion disordering.

3.
Inorg Chem ; 62(1): 247-255, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36534762

RESUMEN

A-site ordered double perovskites with the general formula LnBaCo2O6-δ (where Ln is a lanthanide element) present electrical and electrocatalytic properties that make them attractive as possible ceramic electrode materials for solid oxide cells or alkaline electrolyzers. The properties are highly influenced by the anion vacancy concentration, which is strongly related to the Co-oxidation state, and their location in the structure. Awareness of the stable phases is essential to synthesize, evaluate, and optimize the properties of LnBaCo2O6-δ oxides at operating conditions in different applications. TbBaCo2O6-δ are representative oxides of these layered perovskite systems. The present article reports a study of TbBaCo2O6-δ by electron diffraction, high-resolution electron microscopy, and powder neutron diffraction experiments at different temperatures. The synthesis of TbBaCo2O6-δ in air and slow cooling to room temperature (RT) at 5 °C h-1 leads to samples formed by distinct phases with different oxygen contents and crystal structures. The 122 and 112 phases (with ap × 2ap × 2ap and ap × ap × 2ap unit cells, respectively, with ap being the lattice parameter of the simple cubic perovskite structure) are predominant in quasi-equilibrium prepared samples (cooled at RT at 1 °C h-1) or prepared in Ar flow and quenched to RT. The evolution of the crystal structure of TbBaCo2O6-δ during thermal oxygen release/uptaking consists of modulation from the 122 phase to the 112 phase (or vice versa during uptaking) by creation/occupation of anion vacancies within the TbO1-δ planes. Anion vacancies are not detected in the oxygen crystallographic position different from those located within the TbO1-δ planes even at the highest temperatures, supporting the 2D character of the high anion conduction of the LnBaCo2O6-δ oxides.

4.
Inorg Chem ; 62(42): 17362-17370, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37822252

RESUMEN

Europium tantalum perovskite oxynitrides were prepared by a new high-temperature solid-state synthesis under N2 or N2/H2 gas. The nitrogen stoichiometry was tuned from 0.63 to 1.78 atoms per Eu or Ta atom, starting with appropriate N/O ratios in the mixture of the reactants Eu2O3, EuN and Ta3N5, or Eu2O3 and TaON, which was treated at 1200 °C for 3 h. Two phases were isolated with compositions EuTaO2.37N0.63 and Eu3Ta3O3.66N5.34, showing different crystal structures and magnetic properties. Electron diffraction and Rietveld refinement of synchrotron radiation X-ray diffraction indicated that EuTaO2.37N0.63 is a simple perovskite with cubic Pm3̅m structure and cell parameter a = 4.02043(1) Å, whereas the new compound Eu3Ta3O3.66N5.34 is the first example of a triple perovskite oxynitride and shows space group P4/mmm with crystal parameters a = 3.99610(2), c = 11.96238(9) Å. The tripling of the c-axis in this phase is a consequence of the partial ordering of europium atoms with different charges in two A sites of the perovskite structure with relative ratio 2:1, where the formal oxidation states +3 and +2 are respectively dominant. Magnetic data provide evidence of ferromagnetic ordering developing at low temperatures in both oxynitrides, with saturation magnetization of about 6 µB and 3 µB per Eu ion for EuTaO2.37N0.63 and the triple perovskite Eu3Ta3O3.66N5.34 respectively, and corresponding Curie temperatures of about 7 and 3 K, which is in agreement with the lower proportion of Eu2+ in the latter compound.

5.
Inorg Chem ; 61(3): 1597-1602, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35015549

RESUMEN

Ba3VWO8.5 is an oxide ion conductor with a bulk conductivity of 5.0 × 10-5 S cm-1 at 600 °C. Ba3VWO8.5 is anomalous to the other Ba3M'M″O8.5 (M' = Nb; M″ = Mo, W) oxide ionic conductors, as it exhibits cation order with vanadium and tungsten on the M1 site only. Here, we report a variable temperature neutron diffraction study of Ba3VWO8.5, which demonstrates that cation order is retained up to 800 °C. We show for the first time that the structural rearrangements reported for hexagonal perovskite derivatives Ba3M'M″O8.5 are dictated by water absorption. The significant water uptake in Ba3M'M″O8.5 (M' = Nb; M″ = Mo, W) arises due to the flexibility of the crystal structure, whereby a fraction of the transition metal cations move from the M1 site to the octahedral M2 site upon absorption of water. The results presented here demonstrate that the presence of 50% V5+ on the M1 site, which has a strong preference for tetrahedral geometry, is enough to disrupt the flexibility of the cation sublattice, resulting in the ordering of the cations exclusively on the M1 site and no significant water absorption.

6.
Inorg Chem ; 61(32): 12518-12525, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35926167

RESUMEN

Layered Sr2M3As2O2-type oxypnictides are composed of tetrahedral M2Pn2 and square planar MO2 layers, the building blocks of iron-based and cuprate superconductors. To further expand our understanding of the chemical and magnetic properties of the Sr2Cr3-xMnxAs2O2 solid solution, Sr2Cr2MnAs2O2 has been synthesized. The compound crystallizes in the I4/mmm tetragonal space group with a refined stoichiometry of Sr2Cr1.85Mn1.15As2O2. The M(2) site within the M2Pn2 slab is occupied by 42.7% Cr and 57.3% Mn, and the magnetic moments order antiferromagnetically below TN(M2) = 540 K with a C-type antiferromagnetic structure. The M(1) site within the MO2 layers is fully occupied by Cr, and antiferromagnetic order is observed below TN(M1) = 200 K. Along c, there are two possible interplanar arrangements: ferromagnetic with the (1/2, 1/2, 0) propagation vector and antiferromagnetic with the (1/2, 1/2, 1/2) propagation vector. Magnetic phase separation arises so that both propagation vectors are observed below 200 K. Such magnetic phase separation has not been previously observed in Sr2M3As2O2 phases (M = Cr, Mn) and shows that there are several competing magnetic structures present in these compounds.

7.
Inorg Chem ; 61(32): 12685-12691, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917523

RESUMEN

Combining different anions in one material allows tuning of its structural, magnetic, and electronic properties. We hereby present the mixed anion compound Sr2BN2H, expanding the less-known class of nitridoborate hydrides. Solid-state reaction of Sr2N, BN, and SrH2 at 850 °C in a tube furnace yielded a gray, air- and moisture-sensitive powder of Sr2BN2H. It crystallizes as colorless platelets in the orthorhombic space group Pnma (no. 62) with a = 9.9164(2), b = 3.9079(1), and c = 10.1723(2) Å and Z = 4. An initial structural model was obtained from single-crystal X-ray diffraction data and corroborated by neutron powder diffraction data of the corresponding deuteride. Further validation by 1H and 11B MAS NMR, FTIR, and Raman spectroscopy complements the structural proof of anionic hydrogen present in the compound. Quantum chemical calculations support the experimental findings and reveal the electronic structure of Sr2BN2H.

8.
Inorg Chem ; 61(26): 10015-10022, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35729687

RESUMEN

We present the synthesis of a novel binary metal oxide material: Ba7Mn4O15. The crystal structure has been investigated by high-resolution powder synchrotron X-ray diffraction in the temperature range of 100-300 K as well as by powder neutron diffraction at 10 and 80 K. This material represents an isostructural barium-substituted analogue of the layered material Sr7Mn4O15 that forms its own structural class. However, we find that Ba7Mn4O15 adopts a distinct magnetic ordering, resulting in a magnetoelectric ground state below 50 K. The likely magnetoelectric coupling mechanisms have been inferred from performing a careful symmetry-adapted refinement against the powder neutron diffraction experiments, as well as by making a comparison with the nonmagnetoelectric ground state of Sr7Mn4O15.

9.
Inorg Chem ; 61(30): 11622-11628, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852971

RESUMEN

Extended solid-state materials based on the hexagonal perovskite framework are typified by close competition between localized magnetic interactions and quasi-molecular electronic states. Here, we report the structural and magnetic properties of the new six-layer hexagonal perovskite Ba3CaMo2O9. Neutron diffraction experiments, combined with magnetic susceptibility measurements, show that the Mo2O9 dimers retain localized character down to 5 K and adopt nonmagnetic spin-singlet ground states. This is in contrast to the recently reported Ba3SrMo2O9 analogue, in which the Mo2O9 dimers spontaneously separate into a mixture of localized and quasi-molecular ground states. Structural distortions in both Ba3CaMo2O9 and Ba3SrMo2O9 have been studied with the aid of distortion mode analyses to elucidate the coupling between the crystal lattice and electronic interactions in 6H Mo5+ hexagonal perovskites.

10.
Nano Lett ; 21(19): 8290-8297, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34553949

RESUMEN

The most common MXene composition Ti3C2Tx (T = F, O) shows outstanding stability as anode for sodium ion batteries (100% of capacity retention after 530 cycles with charge efficiency >99.7%). However, the reversibility of the intercalation/deintercalation process is strongly affected by the synthesis parameters determining, in turn, significant differences in the material structure. This study proposes a new approach to identify the crystal features influencing the performances, using a structural model built with a multitechnique approach that allows exploring the short-range order of the lamella. The model is then used to determine the long-range order by inserting defective elements into the structure. With this strategy it is possible to fit the MXene diffraction patterns, obtain the structural parameters including the stoichiometric composition of the terminations (neutron data), and quantify the structural disorder which can be used to discriminate the phases with the best electrochemical properties.

11.
Angew Chem Int Ed Engl ; 61(40): e202209497, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35939356

RESUMEN

Cation ordering in ABX3 perovskites is important to structural, physical and chemical properties. Here we report discovery of CaCuFeReO6 with the tetragonal AA'BB'O6 double double perovskite structure that was previously only reported for A'=Mn compositions. CaCuFeReO6 occurs in the same phase field as CaCu3 Fe2 Re2 O12 demonstrating that different A-cation ordered peroskites may be obtained in the same chemical system. CaCuFeReO6 has ferrimagnetic order of Fe, Re and Cu spins below TC =567 K, in contrast to Mn analogues where the Mn spins order separately at much lower temperatures. The magnetoresistance of CaCuFeReO6 displays low-field "butterfly" hysteresis with an unusual change from negative to positive values as field increases. Many more AA'BB'O6 double double perovskites may be accessible for A'=Cu and other divalent transition metals at high pressure, so the presently known phases likely represent only the "tip of the iceberg" for this family.

12.
Nat Mater ; 19(7): 752-757, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32123332

RESUMEN

Oxide ion and proton conductors, which exhibit high conductivity at intermediate temperature, are necessary to improve the performance of ceramic fuel cells. The crystal structure plays a pivotal role in defining the ionic conduction properties, and the discovery of new materials is a challenging research focus. Here, we show that the undoped hexagonal perovskite Ba7Nb4MoO20 supports pure ionic conduction with high proton and oxide ion conductivity at 510 °C (the bulk conductivity is 4.0 mS cm-1), and hence is an exceptional candidate for application as a dual-ion solid electrolyte in a ceramic fuel cell that will combine the advantages of both oxide ion and proton-conducting electrolytes. Ba7Nb4MoO20 also showcases excellent chemical and electrical stability. Hexagonal perovskites form an important new family of materials for obtaining novel ionic conductors with potential applications in a range of energy-related technologies.

13.
Inorg Chem ; 60(21): 16397-16408, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653330

RESUMEN

We report two new rare-earth (R) ternary intermetallic compounds-Ho2Ni0.8T1.2 with T = Si and Ge-that correspond to the R5Ni2T3 phase earlier reported to form in Dy-Ni-T and Ho-Ni-T ternary systems. The compounds crystallize in a filled version of the orthorhombic Zr2Ni1-xP-type structure with x = 0.52; their stoichiometry, determined from both single-crystal and powder X-ray diffraction data, is centered on Ho2Ni0.8T1.2 with a narrow solid solubility range for the silicide, while the germanide appears to be a line phase. In addition to R = Dy and Ho, R2Ni0.8T1.2 compounds also form for R = Y and Tb, representing the first examples of rare-earth-based compounds adopting the Zr2Ni1-xP structural prototype. Bulk magnetization data reveal the main transitions of the ferrimagnetic or ferromagnetic type at TC = 38 K for Ho2Ni0.8Si1.2 and TC = 37 K for Ho2Ni0.8Ge1.2, which are followed by subsequent magnetic reordering at lower temperatures. Neutron diffraction shows complex magnetic structures below TC with both ferromagnetic and antiferromagnetic components and magnetic propagation vector κ1 = [0, 0, 0]. Below TN ≅ 24 K (22 K) for the silicide (germanide), an additional antiferromagnetic coupling following an incommensurate magnetic propagation vector κ2 = [κx, 0, 0] appears to coexist with the first magnetic structure.

14.
Inorg Chem ; 60(14): 10550-10564, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34184880

RESUMEN

Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin-orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) "oxo-type" bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 µB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.

15.
Inorg Chem ; 60(21): 16484-16491, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623795

RESUMEN

The development of new synthetic methodologies of perovskite oxynitrides is challenging but necessary for the search of new compounds and the investigation of new properties. Here, we report a new method of preparation of the perovskite LaTaON2 that has been investigated as a pigment and photocatalyst for water splitting. The synthesis proceeds through the solid-state reactions under N2 at 1500 °C between La2O3, LaN, and Ta3N5 or between LaN and TaON, which are completed after 3 h and lead to sintered, highly crystalline samples with particle sizes up to 1 µm. Nitrogen-deficient samples LaTaO1+xN2-x with x ≤ 0.35 are prepared by changing the N/O ratio in the mixture of reactants. Electron diffraction, synchrotron diffraction, and neutron diffraction studies on stoichiometric and nitrogen-deficient compounds indicate that they crystallize in the monoclinic space group I2/m with lattice parameters for LaTaON2 of a = 5.71458(7), b = 8.05987(10), c = 5.74772(6) Å, and ß = 89.982(3)°. The three anion sites of the I2/m structure are partially occupied by oxygen and nitrogen, with a preference of nitride for two positions with occupancies of 77 and 88%. This anion distribution is different from that reported in previous studies of samples prepared by ammonolysis at lower temperature, suggesting that the synthesis conditions affect the anion order of this perovskite. Optical measurements indicate a band gap of about 1.9 eV, which is close to that observed in samples prepared by other methods. The determined dielectric permittivity for LaTaON2 εr ≈ 200, reported for the first time for a highly nitrided pseudocubic perovskite, is similar to that observed in perovskites with one nitrogen per formula.

16.
Inorg Chem ; 60(16): 12001-12008, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34309359

RESUMEN

Two M2(SeO3)F2 fluoro-selenites (M = Mn2+, Ni2+) have been synthesized using optimized hydrothermal reactions. Their 3D framework consists of 1D-[MO2F2]4-chains of edge-sharing octahedra with a rare topology of alternating O-O and F-F µ2 bridges. The interchain corner-sharing connections are assisted by the mixed O vs F anionic nature and develop a complex set of M-X-M superexchanges as calculated by LDA+U. Their interplay induces prominent in-chain antiferromagnetic frustration, while the interchain exchanges are responsible for the cycloidal magnetic structure observed below TN ≈ 21.5 K in the Ni2+ case. For comparison the Mn2+ compound develops a nearly collinear spin (canted) ordering below TN ≈ 26 K with ferromagnetic chain units.

17.
Inorg Chem ; 60(11): 8027-8034, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010552

RESUMEN

The antiferromagnetic behavior of Fe3+ oxides of composition RE1.2Ba1.2Ca0.6Fe3O8, RE2.2Ba3.2Ca2.6Fe8O21, and REBa2Ca2Fe5O13 (RE = Gd, Tb) is highly influenced by the type of oxygen polyhedron around the Fe3+ cations and their ordering, which is coupled with the layered RE/Ba/Ca arrangement within the perovskite-related structure. Determination of the magnetic structures reveals different magnetic moments associated with Fe3+ spins in the different oxygen polyhedra (octahedron, tetrahedron, and square pyramid). The structural aspects impact on the strength of the Fe-O-Fe superexchange interactions and, therefore, on the Néel temperature (TN) of the compounds. The oxides present an interesting transition from three-dimensional (3D) to two-dimensional (2D) magnetic behavior above TN. The 2D magnetic interactions are stronger within the FeO6 octahedra layers than in the FeO4 tetrahedra layers.

18.
Angew Chem Int Ed Engl ; 60(41): 22248-22252, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34369645

RESUMEN

Control of cation ordering in ABX3 perovskites is important to structural, physical and chemical properties. Here we show that thermal transformations of AA'BB'O6 double double perovskites, where both A and B sites have 1:1 cation order, to (A0.5 A'0.5 )2 BB'O6 double perovskites with fully disordered A/A' cations can be achieved under pressure in CaMnMnWO6 and SmMnMnTaO6 , enabling both polymorphs of each material to be recovered. This leads to a dramatic switch of magnetic properties from ferrimagnetic order in double double perovskite CaMnMnWO6 to spin glass behaviour in the highly frustrated double perovskite polymorph. Comparison of double double and double perovskite polymorphs of other materials will enable effects of cation order and disorder on other properties such as ferroelectricity and conductivity to be explored.

19.
Angew Chem Int Ed Engl ; 60(11): 5683-5687, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33438295

RESUMEN

The first representative of a novel class of mixed-anionic compounds, the sulfate hydride Na3 SO4 H, and the corresponding deuteride Na3 SO4 D were obtained from the solid-state reaction of NaH or NaD with dry Na2 SO4 . Precise reaction control is required, because too harsh conditions lead to the reduction of sulfate to sulfide. A combined X-ray and neutron diffraction study revealed that the compound crystallizes in the tetragonal space group P4/nmm with the lattice parameters a=7.0034(2) Šand c=4.8569(2) Å. The sole presence of hydride and absence of hydroxide ions is proven by vibrational spectroscopy and comparison with spectra predicted from quantum chemical calculations. 1 H and 23 Na MAS NMR spectra are consistent with the structure of Na3 SO4 H: a single 1 H peak at 2.9 ppm is observed, while two peaks at 15.0 and 6.2 ppm for the inequivalent 23 Na sites are observed. Elemental analysis and quantum chemical calculations further support these results.

20.
Chemistry ; 26(51): 11742-11750, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32542938

RESUMEN

The unprecedented borate hydride Sr5 (BO3 )3 H and deuteride Sr5 (11 BO3 )3 D crystallizing in an apatite-related structure are reported. Despite the presence of hydride anions, the compound decomposes only slowly in air. Doped with Eu2+ , it shows broad-band orange-red emission under violet excitation owing to the 4f6 5d-4f7 transition of Eu2+ . The observed 1 H NMR chemical shift is in good agreement with previously reported 1 H chemical shifts of ionic metal hydrides as well as with quantum chemical calculations and very different from 1 H chemical shifts usually found for hydroxide ions in similar materials. FTIR and Raman spectroscopy of different samples containing 1 H, 2 H, nat B, and 11 B combined with calculations unambiguously prove the absence of hydroxide ions and the sole incorporation of hydride ions into the borate. The orange-red emission obtained by doping with Eu2+ shows that the new compound class might be a promising host material for optical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA