Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 113(3): 614-623, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196536

RESUMEN

PURPOSE: To investigate brain tissue response to ultra-high dose rate (uHDR, FLASH) and standard dose rate (SDR) proton irradiations in the Bragg peak region. METHODS AND MATERIALS: Active scanning uHDR delivery was established for proton beams for investigation of dose rate effects between clinical SDR and uHDR at ∼10 Gy in the Bragg peak region (dose-averaged linear energy transfer [LETD] ranging from 4.5 to 10.2 keV µm-1 ). Radiation- induced injury of neuronal tissue was assessed by studying the DNA double strand break repair kinetics surrogated by nuclear γH2AX staining (radiation induced foci [RIF]), microvascular density and structural integrity (MVD, CD31+ endothelium), and inflammatory microenvironmental response (CD68+ microglia/macrophages and high mobility group box protein 1[HMGB]) in healthy C57BL/6 mouse brains. RESULTS: Averaged dose rates achieved were 0.17 Gy/s (SDR) and 120 Gy/s (uHDR). The fraction of RIF-positive cells increased after SDR ∼10-fold, whereas a significantly lower fraction of RIF-positive cells was found after uHDR versus SDR (∼2 fold, P < .0001). Moreover, uHDR substantially preserved the microvascular architecture and reduced microglia/macrophage regulated associated inflammation as compared with SDR. CONCLUSIONS: The feasibility of uHDR raster scanning proton irradiation is demonstrated to elicit FLASH sparing neuroprotective effects compared to SDR in a preclinical in vivo model.


Asunto(s)
Fármacos Neuroprotectores , Terapia de Protones , Traumatismos por Radiación , Animales , Transferencia Lineal de Energía , Ratones , Ratones Endogámicos C57BL , Terapia de Protones/métodos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA