Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hepatol ; 79(6): 1396-1407, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37611641

RESUMEN

BACKGROUND & AIMS: Biliary atresia (BA) is an obstructive cholangiopathy that initially affects the extrahepatic bile ducts (EHBDs) of neonates. The etiology is uncertain, but evidence points to a prenatal cause. Fetal tissues have increased levels of hyaluronic acid (HA), which plays an integral role in fetal wound healing. The objective of this study was to determine whether a program of fetal wound healing is part of the response to fetal EHBD injury. METHODS: Mouse, rat, sheep, and human EHBD samples were studied at different developmental time points. Models included a fetal sheep model of prenatal hypoxia, human BA EHBD remnants and liver samples taken at the time of the Kasai procedure, EHBDs isolated from neonatal rats and mice, and spheroids and other models generated from primary neonatal mouse cholangiocytes. RESULTS: A wide layer of high molecular weight HA encircling the lumen was characteristic of the normal perinatal but not adult EHBD. This layer, which was surrounded by collagen, expanded in injured ducts in parallel with extensive peribiliary gland hyperplasia, increased mucus production and elevated serum bilirubin levels. BA EHBD remnants similarly showed increased HA centered around ductular structures compared with age-appropriate controls. High molecular weight HA typical of the fetal/neonatal ducts caused increased cholangiocyte spheroid growth, whereas low molecular weight HA induced abnormal epithelial morphology; low molecular weight HA caused matrix swelling in a bile duct-on-a-chip device. CONCLUSION: The fetal/neonatal EHBD, including in human EHBD remnants from Kasai surgeries, demonstrated an injury response with prolonged high levels of HA typical of fetal wound healing. The expanded peri-luminal HA layer may swell and lead to elevated bilirubin levels and obstruction of the EHBD. IMPACT AND IMPLICATIONS: Biliary atresia is a pediatric cholangiopathy associated with high morbidity and mortality rates; although multiple etiologies have been proposed, the fetal response to bile duct damage is largely unknown. This study explores the fetal pathogenesis after extrahepatic bile duct damage, thereby opening a completely new avenue to study therapeutic targets in the context of biliary atresia.


Asunto(s)
Conductos Biliares Extrahepáticos , Atresia Biliar , Humanos , Animales , Ratones , Ratas , Niño , Ovinos , Atresia Biliar/patología , Conductos Biliares Extrahepáticos/patología , Feto/patología , Cicatrización de Heridas , Bilirrubina
2.
Virol J ; 20(1): 205, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679808

RESUMEN

Bovine viral diarrhea virus (BVDV) affects cattle worldwide causing severe productive and economic loss. In this study, we investigated the subgenotypes of BVDV circulating in cattle samples from the Aysén region, an active cattle breeding area located in southern Chile. Partial amplification of the 5' untranslated region (UTR) was performed by polymerase chain reaction (PCR), and twelve samples were analyzed by Sanger sequencing and phylogenetic analysis. Eight samples were identified as belonging to Pestivirus bovis subgenotype 1e, three to 1-b, and one to 1-d. The phylogenetic analyses performed revealed a marked distance between these now-identified strains and those previously reported in the country. These findings support the need to continually expand the analysis of the variability of the viral phylogeny for the currently circulating BVDV strains and to update the vaccines recommended for this livestock area and surrounding areas.


Asunto(s)
Virus de la Diarrea Viral Bovina , Animales , Bovinos , Chile/epidemiología , Filogenia , Virus de la Diarrea Viral Bovina/genética , Regiones no Traducidas 5' , Diarrea
3.
Am J Physiol Cell Physiol ; 322(4): C674-C687, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196167

RESUMEN

The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.


Asunto(s)
Receptores de Hialuranos , Ácido Hialurónico , Humanos , Receptores de Hialuranos/metabolismo , Peso Molecular
4.
Nanomedicine ; 35: 102407, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33905828

RESUMEN

5-Hydroxymethylcytosine (5hmC), the first oxidized form of the well-known epigenetic modification 5-methylcytosine, is an independent regulator of gene expression and therefore a potential marker for disease. Here, we report on methods developed for a selective solid-state nanopore assay that enable direct analysis of global 5hmC content in human tissue. We first describe protocols for preparing genomic DNA derived from both healthy breast tissue and stage 1 breast tumor tissue and then use our approach to probe the net abundance of the modified base in each cohort. Then, we employ empirical data to adjust for the impact of nanopore diameter on the quantification. Correcting for variations in nanopore diameter among the devices used for analysis reveals no detectable difference in global 5hmC content between healthy and tumor tissue. These results suggest that 5hmC changes may not be associated with early-stage breast cancer and instead are a downstream consequence of the disease.


Asunto(s)
5-Metilcitosina/análogos & derivados , Neoplasias de la Mama/genética , ADN de Neoplasias/genética , Genoma Humano , Secuenciación de Nanoporos , Neoplasias de la Mama/metabolismo , ADN de Neoplasias/metabolismo , Femenino , Humanos , Células MCF-7 , Estadificación de Neoplasias
6.
Viruses ; 16(1)2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38257779

RESUMEN

Usutu virus (USUV) is a flavivirus transmitted to avian species through mosquito bites that causes mass mortalities in wild and captive bird populations. However, several cases of positive dead birds have been recorded during the winter, a vector-free period. To explain how USUV "overwinters", the main hypothesis is bird-to-bird transmission, as shown for the closely related West Nile virus. To address this question, we experimentally challenged canaries with intranasal inoculation of USUV, which led to systemic dissemination of the virus, provided the inoculated dose was sufficient (>102 TCID50). We also highlighted the oronasal excretion of infectious viral particles in infected birds. Next, we co-housed infected birds with naive sentinels, to determine whether onward transmission could be reproduced experimentally. We failed to detect such transmission but demonstrated horizontal transmission by transferring sputum from an infected to a naive canary. In addition, we evaluated the cellular tropism of respiratory mucosa to USUV in vitro using a canary tracheal explant and observed only limited evidence of viral replication. Further research is then needed to assess if and how comparable bird-to-bird transmission occurs in the wild.


Asunto(s)
Líquidos Corporales , Flavivirus , Virus del Nilo Occidental , Animales , Canarios , Mucosa Respiratoria
7.
Aging Cell ; 22(11): e14004, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37850336

RESUMEN

Reproductive aging is associated with ovulatory defects. Age-related ovarian fibrosis partially contributes to this phenotype as short-term treatment with anti-fibrotic compounds improves ovulation in reproductively old mice. However, age-dependent changes that are intrinsic to the follicle may also be relevant. In this study, we used a mouse model to demonstrate that reproductive aging is associated with impaired cumulus expansion which is accompanied by altered morphokinetic behavior of cumulus cells as assessed by time-lapse microscopy. The extracellular matrix integrity of expanded cumulus-oocyte complexes is compromised with advanced age as evidenced by increased penetration of fluorescent nanoparticles in a particle exclusion assay and larger open spaces on scanning electron microscopy. Reduced hyaluronan (HA) levels, decreased expression of genes encoding HA-associated proteins (e.g., Ptx3 and Tnfaip6), and increased expression of inflammatory genes and matrix metalloproteinases underlie this loss of matrix integrity. Importantly, HA levels are decreased with age in follicular fluid of women, indicative of conserved reproductive aging mechanisms. These findings provide novel mechanistic insights into how defects in cumulus expansion contribute to age-related infertility and may serve as a target to extend reproductive longevity.


Asunto(s)
Ácido Hialurónico , Folículo Ovárico , Humanos , Femenino , Ratones , Animales , Ácido Hialurónico/metabolismo , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Ovario/metabolismo , Matriz Extracelular/metabolismo
8.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187720

RESUMEN

Objective: Develop, validate, and characterize a fibrotic murine vaginal wound healing model using bleomycin instillations and epithelial disruption. Approach: We tested the effect of repeated bleomycin instillations with mucosal layer disruption on induction of vaginal fibrosis. Tissue samples collected at various time points were analyzed for fibrosis-related gene expression changes and collagen content. Results: Low (1.5U/kg) and high-dose (2.5U/kg) bleomycin instillations alone did not induce fibrosis, but when high-dose bleomycin was combined with epithelial disruption, increased pro-fibrotic gene expression and trichrome staining were observed. To evaluate spatial and temporal changes in the ECM structure and gene expression, tissue samples were collected at 1 day, 3 weeks, and 6 weeks after bleomycin and epithelial disruption. Data analyses revealed a significant decrease in matrix metabolizing genes and an increase in pro-fibrotic genes and inhibitors of matrix metabolizing genes in the bleomycin plus epithelial disruption group at 3 weeks. Elevated levels of the profibrotic genes Acta2 , Col1a1 , and Col3a were exclusively detected in this group at 3 weeks, and trichrome staining confirmed increased collagen content after 3 weeks. Hydroxyproline levels showed a tendency towards elevation at 3 weeks (p=0.12) and 6 weeks (p=0.14), indicating fibrosis manifestation at 3 weeks and resolution by 6 weeks post-instillation and epithelial disruption. Innovation: We combined bleomycin instillations with epithelial disruption to induce fibrosis and understand the mechanisms of the vaginal repair process. Conclusions: Epithelial disruption combined with bleomycin induces murine vaginal fibrosis within three weeks, characterized by increased collagen synthesis. Remarkably, the vaginal tissue fully recovers within six weeks, elucidating the regenerative capacity of the vagina.

9.
Sci Rep ; 12(1): 4469, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296752

RESUMEN

Hyaluronan (HA) is an essential carbohydrate in vertebrates that is a potentially robust bioindicator due to its critical roles in diverse physiological functions in health and disease. The intricate size-dependent function that exists for HA and its low abundance in most biological fluids have highlighted the need for sensitive technologies to provide accurate and quantitative assessments of polysaccharide molecular weight and concentration. We have demonstrated that solid state (SS-) nanopore technology can be exploited for this purpose, given its molecular sensitivity and analytical capacity, but there remains a need to further understand the impacts of experimental variables on the SS-nanopore signal for optimal interpretation of results. Here, we use model quasi-monodisperse HA polymers to determine the dependence of HA signal characteristics on a range of SS-nanopore measurement conditions, including applied voltage, pore diameter, and ionic buffer asymmetry. Our results identify important factors for improving the signal-to-noise ratio, resolution, and sensitivity of HA analysis with SS-nanopores.


Asunto(s)
Nanoporos , Animales , Ácido Hialurónico , Iones , Peso Molecular , Relación Señal-Ruido
10.
Arthritis Res Ther ; 23(1): 218, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416923

RESUMEN

BACKGROUND: TNF-α-stimulated gene 6 (TSG-6) protein, a TNF-α-responsive hyaladherin, possesses enzymatic activity that can catalyze covalent crosslinks of the polysaccharide hyaluronic acid (HA) to another protein to form heavy chain-hyaluronic acid (HC-HA) complexes in pathological conditions such as osteoarthritis (OA). Here, we examined HA synthase and inflammatory gene expression; synovial fluid HA, TNF-α, and viscosity; and TSG-6-mediated HC-HA complex formation in an equine OA model. The objectives of this study were to (1) evaluate the TNF-α-TSG-6-HC-HA signaling pathway across multiple joint tissues, including synovial membrane, cartilage, and synovial fluid, and (2) determine the impact of OA on synovial fluid composition and biophysical properties. METHODS: HA and inflammatory cytokine concentrations (TNF-α, IL-1ß, CCL2, 3, 5, and 11) were analyzed in synovial fluid from 63 OA and 25 control joints, and HA synthase (HAS1-3), TSG-6, and hyaluronan-degrading enzyme (HYAL2, HEXA) gene expression was measured in synovial membrane and cartilage. HA molecular weight (MW) distributions were determined using agarose gel electrophoresis and solid-state nanopore measurements, and HC-HA complex formation was detected via immunoblotting and immunofluorescence. SEC-MALS was used to evaluate TSG-6-mediated HA crosslinking, and synovial fluid and HA solution viscosities were analyzed using multiple particle-tracking microrheology and microfluidic measurements, respectively. RESULTS: TNF-α concentrations were greater in OA synovial fluid, and TSG6 expression was upregulated in OA synovial membrane and cartilage. TSG-6-mediated HC-HA complex formation was greater in OA synovial fluid and tissues than controls, and HC-HA was localized to both synovial membrane and superficial zone chondrocytes in OA joints. SEC-MALS demonstrated macromolecular aggregation of low MW HA in the presence of TSG-6 and inter-α-inhibitor with concurrent increases in viscosity. CONCLUSIONS: Synovial fluid TNF-α concentrations, synovial membrane and cartilage TSG6 gene expression, and HC-HA complex formation were increased in equine OA. Despite the ability of TSG-6 to induce macromolecular aggregation of low MW HA with resultant increases in the viscosity of low MW HA solutions in vitro, HA concentration was the primary determinant of synovial fluid viscosity rather than HA MW or HC-HA crosslinking. The TNF-α-TSG-6-HC-HA pathway may represent a potential therapeutic target in OA.


Asunto(s)
Ácido Hialurónico , Osteoartritis , Animales , Condrocitos , Caballos , Osteoartritis/genética , Líquido Sinovial , Factor de Necrosis Tumoral alfa
11.
Aging Cell ; 19(11): e13259, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079460

RESUMEN

Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.


Asunto(s)
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hialuronano Sintasas/metabolismo , Ovario/fisiopatología , Adulto , Envejecimiento , Animales , Femenino , Humanos , Ratones
12.
Nat Commun ; 10(1): 5527, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797934

RESUMEN

Tailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns - two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.

13.
Nat Commun ; 9(1): 1037, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531292

RESUMEN

Hyaluronan (or hyaluronic acid, HA) is a ubiquitous molecule that plays critical roles in numerous physiological functions in vivo, including tissue hydration, inflammation, and joint lubrication. Both the abundance and size distribution of HA in biological fluids are recognized as robust indicators of various pathologies and disease progressions. However, such analyses remain challenging because conventional methods are not sufficiently sensitive, have limited dynamic range, and/or are only semi-quantitative. Here we demonstrate label-free detection and molecular weight discrimination of HA with a solid-state nanopore sensor. We first employ synthetic HA polymers to validate the measurement approach and then use the platform to determine the size distribution of as little as 10 ng of HA extracted directly from synovial fluid in an equine model of osteoarthritis. Our results establish a quantitative method for assessment of a significant molecular biomarker that bridges a gap in the current state of the art.


Asunto(s)
Técnicas Electroquímicas/métodos , Electroforesis/métodos , Osteoartritis/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas Electroquímicas/instrumentación , Electroforesis/instrumentación , Caballos , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Peso Molecular , Nanoporos , Tamaño de la Partícula , Líquido Sinovial/química , Líquido Sinovial/metabolismo
14.
Cirugía (Bogotá) ; 2(2): 89-90, ago. 1987. ilus
Artículo en Español | LILACS | ID: lil-70069

RESUMEN

El atrapamiento popliteo es una entidad infrecuentemente diagnosticada, producida por una anomalia congenita, en relacion con la arteria y el haz medial del gemelo, que debe ser tenida en cuenta en pacientes jovenes con sintomatologia isquemica de una de las piernas. Se presenta un caso tipico tratado por los autores.


Asunto(s)
Humanos , Arteriopatías Oclusivas/complicaciones , Arteriopatías Oclusivas/etiología , Arteriopatías Oclusivas/terapia , Arteria Poplítea
15.
León; s.n; 1999. 38 p. tab.
Tesis en Español | LILACS | ID: lil-298748

RESUMEN

Se realizó un estudio descriptivo de serie de casos a pacientes atendidos en el departamento de Ortopedía y Traumatología del Hospital Escuela Oscar Danilo Rosales Argüello, durante el período del primero de enero de 1997 al 15 de febrero de 1999. El universo de estudio serán los pacientes afectados por la enfermedades pie equino varo congenito, ingresados en el departamentode Ortopedía. Según el estudio el sexo masculino fué el más afectado, las intervenciones quirúrgicas se realizán un poco más tarde, ya que la mayoría de pacientes, se operan después del primer año. El tipo de tratamiento utilizado es el tratamiento conservador a base de yeso se prolonga por mucho tiempo


Asunto(s)
Calcáneo , Pie Equinovaro , Tesis Académicas como Asunto , Pie Equino/clasificación , Pie Equino/diagnóstico , Pie Equino/etiología , Deformidades del Pie , Deformidades Congénitas del Pie , Astrágalo/anomalías , Astrágalo/anatomía & histología , Nicaragua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA