Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes Dev ; 35(9-10): 698-712, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888559

RESUMEN

Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/genética , Mutación , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
2.
Mol Cell ; 58(5): 718-21, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046646

RESUMEN

The National Institutes of Health (NIH) encourages trainees to make Individualized Development Plans to help them prepare for academic and nonacademic careers. We describe our approach to building an Individualized Development Plan, the reasons we find them useful and empowering for both PIs and trainees, and resources to help other labs implement them constructively.


Asunto(s)
Investigación Biomédica/organización & administración , National Institutes of Health (U.S.) , Objetivos , Procesos de Grupo , Humanos , Motivación , Administración de Personal , Estados Unidos
3.
PLoS Genet ; 14(9): e1007644, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30192762

RESUMEN

Hunchback is a bifunctional transcription factor that can activate and repress gene expression in Drosophila development. We investigated the regulatory DNA sequence features that control Hunchback function by perturbing enhancers for one of its target genes, even-skipped (eve). While Hunchback directly represses the eve stripe 3+7 enhancer, we found that in the eve stripe 2+7 enhancer, Hunchback repression is prevented by nearby sequences-this phenomenon is called counter-repression. We also found evidence that Caudal binding sites are responsible for counter-repression, and that this interaction may be a conserved feature of eve stripe 2 enhancers. Our results alter the textbook view of eve stripe 2 regulation wherein Hb is described as a direct activator. Instead, to generate stripe 2, Hunchback repression must be counteracted. We discuss how counter-repression may influence eve stripe 2 regulation and evolution.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Elementos de Facilitación Genéticos/genética , Femenino , Proteínas de Homeodominio/metabolismo , Masculino
4.
Exp Parasitol ; 160: 31-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26632503

RESUMEN

Fasciola hepatica saposin-like protein-2 (FhSAP2) is a protein differentially expressed in various developmental stages of F. hepatica. Recombinant FhSAP2 has demonstrated the induction of partial protection in mice and rabbits when it is administered subcutaneously (SC) in Freund's adjuvant. Because FhSAP2 is overexpressed in bacteria in the form of inclusion bodies (IBs), we isolated IBs expressing FhSAP2 and tested their immunogenicity when administered SC in mice emulsified in two different adjuvants: QS-21 and Montanide TM ISA720. Animals received three injections containing 20 µg of protein two weeks apart and 4 weeks after the third injection, mice were infected with 10 F. hepatica metacercariae by oral route. The percentages of protection induced by FhSAP2-IBs were estimated to be between 60.0 and 62.5% when compared with adjuvant-vaccinated, infected controls. By determining the levels of IgG1 and IgG2a antibodies and IL-4 and IFNγ cytokines in the serum of experimental animals, it was found that both Th1 and Th2 immune responses were significantly increased in the FhSAP2-IBs vaccinated groups compared with the adjuvant-vaccinated, infected control groups. The adjuvant-vaccinated groups had significantly lower IgG1 to IgG2a ratios and lower IL-4 to IFNγ ratios than the FhSAP2-IBs vaccinated animals, which is indicative of higher levels of Th2 immune responses. Irrespective to the adjuvant used, animals vaccinated with FhSAP2-IBs exhibited significantly higher survival percentage and less liver damage than the adjuvant-control groups. This study suggests that FhSAP2 has potential as vaccine against F. hepatica and that the protection elicited by this molecule could be linked to a mechanism driven by the CD4-Th1 cells.


Asunto(s)
Anticuerpos Antihelmínticos/biosíntesis , Fasciola hepatica/inmunología , Fascioliasis/prevención & control , Proteínas del Helminto/inmunología , Cuerpos de Inclusión/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antihelmínticos/sangre , Fascioliasis/inmunología , Fascioliasis/mortalidad , Femenino , Inmunidad Celular , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Tasa de Supervivencia , Vacunación
5.
Genetics ; 222(2)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35977387

RESUMEN

Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast to humans as an integral member of the RNA polymerase II elongation complex. Several studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not understood, and there is little understanding of why it is essential for viability. To address these issues, we have isolated 8 suppressor mutations that bypass the essential requirement for Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally distinct complexes and activities, including the histone chaperone FACT, the histone methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA coactivator complex, Sgf73. The identification of these distinct groups suggests that there are multiple ways in which Spn1 bypass can occur, including changes in histone acetylation and alterations in other histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple mechanisms during transcription. Our results suggest that bypassing a subset of these functions allows viability in the absence of Spn1.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Elongación Transcripcional , Cromatina , Proteínas de Unión al ADN/genética , Histona Acetiltransferasas/genética , Chaperonas de Histonas/genética , Histona Desacetilasas/genética , Histona Metiltransferasas/genética , Histonas/genética , Nucleosomas , Factores de Elongación de Péptidos/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Supresión Genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética
6.
Ethn Dis ; 20(1 Suppl 1): S1-17-23, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20521379

RESUMEN

INTRODUCTION: We recently reported the biochemical characterization of a novel Fasciola hepatica recombinant antigen termed FhSAP2, which has previously shown to elicit protection to F. hepatica infection in rabbits. Further we reported that intramuscular (IM) injections of BALB/c mice with a pFLAG-CMV(-2) vector carrying cDNA encoding for FhSAP2 (cDNA-FhSAP2) induce high levels of immune response. The aim of the present study is to ascertain whether the immune response induced by this DNA construct may induce protection in mice against subsequent infection with F. hepatica metacercariae (mc). In addition, protection following subcutaneous (SC) injections with recombinant FhSAP2 was evaluated. METHODS: Mice received three IM injections with 100 microg of cDNA-FhSAP2 or three SC injections with 20 microg of FhSAP2. Four weeks after the last vaccination mice were challenged orally with 5 F. hepatica me and euthanized 45 days after challenge. RESULTS: Mean worm burdens found in mice vaccinated with cDNA-FhSAP2 was reduced by 83.3% and the mean worm burdens found in mice vaccinated with the recombinant protein was reduced by 60% when compared with controls. All vaccinated animals had less liver damage than challenge controls. Vaccination with cDNA-FhSAP2 seems to favor a mixed Th1/Th2-antibody dependent with higher predominance of Th1-regulated antibody response. CONCLUSIONS: The vaccination with cDNA-FhSAP2 or recombinant FhSAP2 may protect hosts against F. hepatica infections. The vaccination with cDNA form of FhSAP2 appeared to be a little more efficient preventingthe infection. The predominance of Th1-dependent antibodies in the vaccinated animals may be responsible for the protection but this should be confirmed by Th1-cytokines determinations.


Asunto(s)
Antígenos Helmínticos/inmunología , Fasciola hepatica/inmunología , Fascioliasis/inmunología , Animales , Anticuerpos Antihelmínticos , Antígenos Helmínticos/administración & dosificación , ADN Complementario , ADN de Helmintos/inmunología , ADN Recombinante , Femenino , Inyecciones Intramusculares , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos BALB C , Plásmidos , Proteínas Recombinantes/inmunología , Saposinas/inmunología , Vacunación , Vacunas Sintéticas
7.
G3 (Bethesda) ; 10(12): 4473-4482, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33037064

RESUMEN

Enhancers are DNA sequences composed of transcription factor binding sites that drive complex patterns of gene expression in space and time. Until recently, studying enhancers in their genomic context was technically challenging. Therefore, minimal enhancers, the shortest pieces of DNA that can drive an expression pattern that resembles a gene's endogenous pattern, are often used to study features of enhancer function. However, evidence suggests that some enhancers require sequences outside the minimal enhancer to maintain function under environmental perturbations. We hypothesized that these additional sequences also prevent misexpression caused by a transcription factor binding site mutation within a minimal enhancer. Using the Drosophila melanogastereven-skipped stripe 2 enhancer as a case study, we tested the effect of a Giant binding site mutation (gt-2) on the expression patterns driven by minimal and extended enhancer reporter constructs. We found that, in contrast to the misexpression caused by the gt-2 binding site deletion in the minimal enhancer, the same gt-2 binding site deletion in the extended enhancer did not have an effect on expression. The buffering of expression levels, but not expression pattern, is partially explained by an additional Giant binding site outside the minimal enhancer. Deleting the gt-2 binding site in the endogenous locus had no significant effect on stripe 2 expression. Our results indicate that rules derived from mutating enhancer reporter constructs may not represent what occurs in the endogenous context.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
PLoS One ; 6(4): e19323, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559444

RESUMEN

BACKGROUND: Pathogenic versus protective outcomes to Dengue virus (DENV) infection are associated with innate immune function. This study aimed to determine the role of increased TLR3- and TLR7/8-mediated innate signaling after Dengue infection of rhesus macaques in vivo to evaluate its impact on disease and anti-DENV immune responses. METHODOLOGY/PRINCIPAL FINDINGS: TLR3 and TLR7/8 agonists (emulsified in Montanide) were administered subcutaneously to rhesus macaques at 48 hours and 7 days after DENV infection. The Frequency and activation of myeloid dendritic cells, plasmacytoid dendritic cells, and B cells were measured by flow cytometry while the serum levels of 14 different cytokines and chemokines were quantified. Adaptive immune responses were measured by DENV-specific antibody subtype measurements. Results showed that the combined TLR agonists reduced viral replication and induced the development of a proinflammatory reaction, otherwise absent in Dengue infection alone, without any clear signs of exacerbated disease. Specifically, the TLR-induced response was characterized by activation changes in mDC subsets concurrent with higher serum levels of CXCL-10 and IL-1Ra. TLR stimulation also induced higher titers of anti-DENV antibodies and acted to increase the IgG2/IgG1 ratio of anti-DENV to favor the subtype associated with DENV control. We also observed an effect of DENV-mediated suppression of mDC activation consistent with prior in vitro studies. CONCLUSIONS/SIGNIFICANCE: These data show that concurrent TLR3/7/8 activation of the innate immune response after DENV infection in vivo acts to increase antiviral mechanisms via increased inflammatory and humoral responses in rhesus macaques, resulting in decreased viremia and melioration of the infection. These findings underscore an in vivo protective rather than a pathogenic role for combined TLR3/7/8-mediated activation in Dengue infection of rhesus macaques. Our study provides definitive proof-of-concept into the mechanism by which DENV evades immune recognition and activation in vivo.


Asunto(s)
Virus del Dengue/genética , Dengue/inmunología , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Replicación Viral , Animales , Citocinas/metabolismo , Femenino , Citometría de Flujo , Inmunidad Innata , Inflamación , Leucocitos Mononucleares/citología , Macaca mulatta , Masculino
9.
Vet Parasitol ; 169(1-2): 82-92, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20056331

RESUMEN

Use of the rabbit as disease model has long been hampered by a lack of immunological assays specific to this species. In the present study we developed a SYBR Green-based, real-time RT-PCR protocol to quantitate cytokine mRNA in freshly harvested rabbit peripheral mononuclear cells. The method was validated in the course of a vaccination trial in which animals vaccinated with the recombinant antigen FhSAP2 were challenged with Fasciola hepatica metacercariae. Changes in the levels of rabbit interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNFalpha), and interferon-gamma (IFNgamma) mRNA were determined. Messenger RNA from the universally expressed housekeeping gene GAPDH was used as an amplification control and allowed for correction of variations in the efficiencies of RNA extraction and reverse transcription. Rabbits vaccinated with FhSAP2 showed an 83.3% reduction in liver fluke burden after challenge infection when compared to non-vaccinated controls. All cytokine mRNAs were found at detectable levels; however, the levels of IFNgamma, TNFalpha, IL-2 and IL-10 were significantly higher in the vaccinated group compared to the non-vaccinated group. These results suggest that protection conferred by FhSAP2 protein could be associated with a mixed Th1/Th2 immune response in which Th1 cytokines are dominant. The real-time RT-PCR method described herein can be a useful tool for monitoring changes in basic immune functions in the rabbit model of fascioliasis and may also aid in studies of human diseases for which the rabbit is an important experimental model.


Asunto(s)
Antígenos Helmínticos/inmunología , Citocinas/inmunología , Fascioliasis/inmunología , ARN Mensajero/inmunología , Vacunación , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/administración & dosificación , Cartilla de ADN/normas , ADN Complementario/análisis , Modelos Animales de Enfermedad , Fasciola hepatica/inmunología , Fascioliasis/prevención & control , Femenino , Hígado/parasitología , Masculino , Recuento de Huevos de Parásitos , Conejos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA