Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Phys ; 41(1): 99-112, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25465849

RESUMEN

This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.


Asunto(s)
Opuntia/química , Carbonato de Calcio/química , Oxalato de Calcio/química , Cristalografía por Rayos X , Magnesio/química , Óxido de Magnesio/química , Opuntia/crecimiento & desarrollo , Peróxidos/química , Ácidos Fosfóricos/química , Cloruro de Potasio/química
2.
Sci Rep ; 14(1): 8075, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580685

RESUMEN

During the preparation of fixed prosthesis (including individual bridges and crowns) it is important to select the materials that have the best features and properties to predict a successful clinical treatment. The objective of this study was to determine if the chemical and structural characteristics could cause to increase the fracture resistance, we used four bis-acryl resins Luxatemp, Protemp, Structur and Telio. Three-points bending by Flexural test were performed in ten bars and they were carried out to compare with Anova test. In addition, the bis-acryl resins were analyzed by scanning electron microscopy, to analyze microstructure and morphology and the molecular structure were performed by Infrared Spectroscopy through Attenuated Total Reflectance. A higher flexural strength was found in Luxatemp and Structur with, no significant differences between this study groups. Regarding Protemp and Telio, these study groups showed a lower flexural strength when were compared with Luxatemp and Structur. These results corroborate SEM and ATR analysis because Luxatemp sample showed a regular size particle on the surface and chemically presents a long cross-linkage polymer chain. The presence of CO3, SiO2 and N-H groups as a fillers particle interacting with OH groups cause a higher flexural strength compared with another groups.

3.
Plant Physiol Biochem ; 203: 108074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37832367

RESUMEN

The Pepper huasteco yellow vein virus (PHYVV) is an endemic geminivirus in Mexico causing partial or total losses in the pepper crop since the damage caused by the virus has not been fully controlled. In this work, we evaluated the effect of ZnO NPs (0, 50, 100, 150, and 200 mM) as a preventive (72 h before) and curative (72 h after) treatment of PHYVV infection in two jalapeño pepper varieties. In this study, we observed a decrease in symptoms, and it could be caused by an induction of the defense system in pepper plants and a direct action on PHYVV by foliar application of ZnO NPs. Our findings suggest that ZnO NP application significantly decreased the viral titer for both varieties at 200 mM by 15.11-fold. However, this effect was different depending on the timing of application and the variety of pepper. The greatest decrease in the viral titer in the preventive treatment in both varieties was at the concentration of 200 mM (1781.17 and 274.5 times, respectively). For curative treatment in cv. Don Pancho at the concentration of 200 mM (333.33 times) and cv. Don Benito at 100 mM (43.10 folds). compared to control. Furthermore, virus mobility was generally restricted for both varieties at 100 mM (15.13-fold) compared to the control. The results possibly delineated that ZnO NPs increased plant resistance possibly by increasing POD (2.08 and 0.25 times) and SOD (0.998 and 1.38) in cv. Don Pancho and cv. Don Benito, respectively. On the other hand, in cv. Don Pancho and cv. Don Benito presented a decrease in CAT (0.61 and 0.058) and PAL (0.78 and 0.77), respectively. Taken together, we provide the first evidence to demonstrate the effect of ZnO NPs on viral symptoms depending on the plan-virus-ZnO NP interaction.


Asunto(s)
Begomovirus , Capsicum , Geminiviridae , Óxido de Zinc , Óxido de Zinc/farmacología , Geminiviridae/fisiología , Plantas
4.
Sensors (Basel) ; 12(8): 10742-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112626

RESUMEN

Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.


Asunto(s)
Dióxido de Carbono/análisis , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Metano/análisis , Procesamiento de Señales Asistido por Computador/instrumentación , Agua/química , Algoritmos , Biocombustibles/análisis , Diseño de Equipo , Solubilidad
5.
Pharmaceutics ; 14(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297503

RESUMEN

Gold nanoparticles (AuNPs) are promising nanomaterials exhibiting anti-cancer effects. Green AuNPs synthesis using plant extracts can be used to achieve stable and beneficial nanoparticles due to their content of bioactive compounds. This research aimed to synthesize and evaluate the antiproliferative and caspase-3 activity induction of green AuNPs synthesized with common mullein (V. thapsus) flowers (AuNPsME) and castor bean (R. communis) leaves (AuNPsCE) ethanolic extracts in human HT29 and SW480 colorectal cancer cells. Their effect was compared with chemically synthesized AuNPs (AuNPsCS). The extracts mainly contained p-coumaric acid (71.88-79.93 µg/g), ferulic acid (19.07-310.71 µg/g), and rutin (8.14-13.31 µg/g). The obtained nanoparticles presented typical FT-IR bands confirming the inclusion of polyphenols from V. thapsus and R. communis and spherical/quasi-spherical morphologies with diameters in the 20.06-37.14 nm range. The nanoparticles (20-200 µg/mL) showed antiproliferative effects in both cell lines, with AuNPsCE being the most potent (IC50 HT29: 110.10 and IC50SW480: 64.57 µg/mL). The AuNPsCS showed the lowest intracellular reactive oxygen species (ROS) generation in SW480 cells. All treatments induced caspase 3/7 activity to a similar or greater extent than 30 mM H2O2-treated cells. Results indicated the suitability of V. thapsus and R. communis extracts to synthesize AuNPs, displaying a stronger antiproliferative effect than AuNPsCS.

6.
Materials (Basel) ; 15(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363227

RESUMEN

The SiO2 particles system is one of the most common ways to protect colloidal metal systems, such as gold nanoparticles, from aggregation and activity loss due to their high chemical stability and low reactivity. In this study, silica green gold nanoparticles (AuNPs synthesized with mullein extract) were fabricated using two different sol-gel methods. The nanoparticles were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier Transformed Infrared (FTIR), and the antibacterial activity against pathogens (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica). Synthesis-1 nanoparticles had a kidney-shaped form and uniform distribution, while synthesis-2 nanoparticles had a spherical and non-uniform form. Characterization showed that temperature is an important factor in the distribution of AuNPs in silica; a decrease allowed the formation of Janus-type, and an increase showed a higher concentration of gold in energy-dispersive spectroscopy (EDS) analysis. Overall, similar bands of the two synthesis silica nanoparticles were observed in FTIR, while XRD spectra showed differences in the preferential growth in AuNPs depending on the synthesis. Higher antibacterial activity was observed against S. aureus, which was followed by L. monocytogenes. No differences were observed in the antibacterial activity between the two different sol-gel methods.

7.
Int J Mol Sci ; 11(9): 3069-86, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20957080

RESUMEN

The aim of this article is to review current knowledge related to the synthesis and characterization of sol gel-derived SBA-16 mesoporous silicas, as well as a review of the state of the art in this issue, to take stock of knowledge about current and future applications. The ease of the method of preparation, the orderly structure, size and shape of their pores and control, all these achievable through simple changes in the method of synthesis, makes SBA-16 a very versatile material, potentially applicable in many areas of science and molecular engineering of materials.


Asunto(s)
Silicatos/síntesis química , Geles/química , Porosidad , Silicatos/química , Dióxido de Silicio/química
8.
Materials (Basel) ; 13(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093053

RESUMEN

Tridimensional cubic mesoporous silica, SBA-16, functionalized with aminopropyl groups, were employed as adsorbents for Pb2+ ion removal from aqueous solution. The adsorption capacity was investigated for the effect of pH, contact time, temperature, and concentration of 3-aminopropyltriethoxysilane (APTES) employed for adsorbent functionalization. The textural properties and morphology of the adsorbents were evaluated by N2 physisorption, small-angle X-ray diffraction (XRD), diffuse reflectance spectroscopy (UV-vis), and transmission electron microscopy (TEM). The functionalization of the SBA-16 was evaluated by elemental analysis (N), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption studies show that the total Pb2+ ions removal was archived on adsorbent having an optimized amount of aminopropyl groups (2N-SBA-16). The maximum of Pb2+ ions removal occurred at optimized adsorption conditions: pH = 5-6, contact time 40 min, and at a low initial lead concentration in solution (200 mg L-1). Under the same adsorption conditions, the amino-functionalized SBA-16 with cubic 3D unit cell structure exhibited higher adsorption capability than its SBA-15 counterpart with uniform mesoporous channels.

9.
Nutrients ; 12(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114068

RESUMEN

Childhood and adolescence are crucial stages of life for bone health. Therefore, an adequate calcium intake and a healthy life style constitute the main strategies to prevent the risk of osteoporosis-related fractures during adulthood. It has been demonstrated that inclusion of indigestible carbohydrates in foods can help improve calcium absorption in growing stages. The objective of this study was to evaluate the effect of supplementation of soluble and insoluble fibers extracted from O. ficus indica cladodes on calcium bioavailability. Male Wistar rats 4-week old were fed diets added with soluble and insoluble fibers extracted from O. ficus indica cladodes at early and late maturity stages, as the only source of calcium. The mineral content, bone mineral density (BMD), physical, microstructural, and biomechanical properties of rat femurs were determined. The bones of rats fed with diets containing a soluble fiber extracted from O. ficus indica at early and late maturity stages exhibited better bone properties (resistance to fracture, microarchitecture, and calcium content) than control rats and rats fed with an insoluble fiber from O. ficusindica cladodes at both maturity stages. As expected, based on these results, the BMD values were higher in adolescent and pubertal rats fed with a diet containing the O. ficus indica soluble fiber. These results demonstrate that the soluble fiber from O. ficus indica cladodes is indeed a valuable source of bioavailable calcium, which contributes to improve physical, densitometric, biomechanical, and microstructural properties of bone in growing rats.


Asunto(s)
Envejecimiento/efectos de los fármacos , Calcio de la Dieta/farmacocinética , Fibras de la Dieta/farmacología , Opuntia/química , Extractos Vegetales/farmacocinética , Animales , Disponibilidad Biológica , Densidad Ósea/efectos de los fármacos , Huesos/metabolismo , Masculino , Ratas , Ratas Wistar
10.
Materials (Basel) ; 13(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325750

RESUMEN

Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption-desorption at 77 K by Specific Brunauer-Emmett-Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.

11.
Mater Sci Eng C Mater Biol Appl ; 116: 111176, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806310

RESUMEN

This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.


Asunto(s)
Poliuretanos , Ingeniería de Tejidos , Ácido 3-Hidroxibutírico , Acrilamida , Rayos gamma , Humanos , Hidroxibutiratos , Poliésteres , Prohibitinas , Andamios del Tejido
12.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 8): i60, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21583296

RESUMEN

Y(2)GeO(5) (yttrium germanium penta-oxide) was synthesized by solid-state reaction at 1443 K. The arrangement, which has monoclinic symmetry, is isostructural with Dy(2)GeO(5) and presents two independent sites for the Y atoms. Around these atoms there are distorted six-coordinated YO(6) octa-hedra and seven-coordinated YO(7) penta-gonal bipyramids. The YO(7) polyhedra are linked together, sharing their edges along a surface parallel to ab, forming a sheet. Each of these parallel sheets is inter-connected by means of GeO(4) tetra-hedra, sharing an edge (or vertex) on one side and a vertex (or edge) on the other adjacent side. Parallel sheets of YO(7) polyhedra are also inter-connected by undulating chains of YO(6) octa-hedra along the c axis. These octa-hedra are joined together, sharing a common edge, to form the chain and share edges with the YO(7) polyhedra of the sheets.

13.
Sci Rep ; 9(1): 5915, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976023

RESUMEN

This paper focuses on the study of the effect of the change of the crystal size on the shape and width of the X-ray diffraction patterns for defatted and deproteinized bones as well as incinerated biogenic hydroxyapatite obtained from bovine, porcine, and human bones. Inductively Couple Plasma showed the presence of some ions such as Mg, K, Al, Fe, Zn, and Na for all samples. The nanometric size of the crystals was determined through High Resolution Transmission Electron Microscopy in which ordered crystals were found. The calcination of raw clean bones at 720 °C produced a transition of crystal size from nano to micro due to a coalescence phenomenon, this was accompanied by a decrease of the peak width of the X-ray diffraction patterns due to the decrease of the inelastic scattering contribution from the microcrystals. A simulation of the effect of the crystallite size on the shape and width of the X-ray patterns was done using PDF-4 software which confirmed that raw ordered bone crystals produce broad peaks which so far have been erroneously assigned to polycrystalline hydroxyapatite with low crystalline quality.


Asunto(s)
Huesos/química , Durapatita/química , Animales , Bovinos , Cristalización , Humanos , Porcinos , Difracción de Rayos X
14.
Materials (Basel) ; 6(9): 4139-4167, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-28788323

RESUMEN

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the state-of-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS) catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA