Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunol Invest ; 41(2): 144-56, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21877937

RESUMEN

Members of the Mycobacterium tuberculosis (Mtb) Beijing genotype are a major concern due to their high prevalence in tuberculosis patients and their high rate of multi-drug resistance. Although it has been shown that Beijing modifies macrophage behavior, little is known about how this genotype could affect the cellular immune response. In order to address this issue, peripheral blood mononuclear cells (PBMC) from healthy BCG vaccinated individuals were stimulated with protein extracts from three Mycobacterium tuberculosis genotypes: Canetti, H37Rv and Beijing evaluating T cell proliferation and cytokine production. In this system both CD4+ and CD8+ proliferated in a similar manner independently of the Mtb genotype used for stimulation. Regarding cytokines, all strains induced similar levels of IFN-γ, but were unable to induce IL-4 and TGF-ß. Contrasting, Canetti strain induced lower production of IL-10, TNF-α and IL-12 compared to H37Rv and Beijing. Interestingly, PBMC stimulated with the Beijing strain produced the highest levels of IL-12 and IL-10 than those stimulated with other strains. This differential cytokine expression could affect the pathogenesis induced by Beijing strain through the modulation of inflammatory process in the host, but the precise mechanisms by which this cytokine environment affects the Beijing strain pathogenesis needs further characterization.


Asunto(s)
Vacuna BCG/inmunología , Citocinas/metabolismo , Leucocitos Mononucleares/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Células Cultivadas , China , ADN Bacteriano/análisis , Femenino , Genotipo , Humanos , Inmunidad Celular , Leucocitos Mononucleares/microbiología , Masculino , Mycobacterium tuberculosis/genética , Especificidad de la Especie , Tuberculosis Pulmonar/microbiología , Vacunación , Adulto Joven
2.
Biotechnol Rep (Amst) ; 33: e00708, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35198419

RESUMEN

Human induced pluripotent stem cells (hiPSCs) must be manufactured as advanced therapy medicinal products (ATMPs) for innovative tissue replacement clinical applications. Yet, production of hiPSCs under current Good Manufacturing Practice (cGMP) presents many hurdles, such as the large-scale cell expansion needed to reach therapeutically-relevant hiPSC doses. For the monitoring of this phase, a fast and reliable cell counting method should be used. Conventional manual cell counting by the hemocytometer method is dependent on the operator's expertise and is time-consuming. Therefore, automation of sample preparation and analysis is needed to improve precision and rapidity of hiPSC cell counting. We investigated whether an automated cell counting method could be validated for use with hiPSCs, in comparison with a reference cell counting method included in the European Pharmacopeia, 10th edition. The proposed method was the fluorescence imaging-based NucleoCounter NC-100 system, whereas the reference method was manual cell counting using a Bürker hemocytometer. The validation strategy complied with EudraLex cGMP regulations for ATMP manufacturing and ICH Q2(R1) indications for validation of analytical methods. The use of the NucleoCounter NC-100 system for automated cell counting was validated, focusing on accuracy, specificity, intra- and inter-operator reproducibility, range and linearity, showing higher precision than the manual method. The automated method can be used more effectively than the manual one for hiPSC cell counting. Thus, this piece of work paves the way for all cGMP facilities that want to pursue hiPSC manufacturing for clinical use.

3.
BioDrugs ; 35(6): 693-714, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34727354

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are manufactured as advanced therapy medicinal products for tissue replacement applications. With this aim, the feasibility of hiPSC large-scale expansion in existing bioreactor systems under current good manufacturing practices (cGMP) has been tested. Yet, these attempts have lacked a paradigm shift in culture settings and technologies tailored to hiPSCs, which jeopardizes their clinical translation. The best approach for industrial scale-up of high-quality hiPSCs is to design their manufacturing process by following quality-by-design (QbD) principles: a scientific, risk-based framework for process design based on relating product and process attributes to product quality. In this review, we analyzed the hiPSC expansion manufacturing process implementing the QbD approach in the use of bioreactors, stressing the decisive role played by the cell quantity, quality and costs, drawing key QbD concepts directly from the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.


Asunto(s)
Células Madre Pluripotentes Inducidas , Reactores Biológicos , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos
4.
Front Neurosci ; 15: 723227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712113

RESUMEN

Mesenchymal stromal cells (MSCs) are multipotent cells with anti-inflammatory properties. Here we tested the safety of MSCs in patients with progressive supranuclear palsy (PSP; ClinicalTrials.gov: NCT01824121; Eudract No. 2011-004051-39). Seven patients were treated. To improve the safety, protocol adjustments were made during the performance of the study. The objectives of our work were: (1) to assess the safety of MSCs and (2) to identify critical issues in cell therapies for neurodegenerative diseases. Autologous MSCs from the bone marrow of PSP patients were administered through the internal carotid arteries. 1-year survival and number of severe adverse events were considered as safety endpoints. Clinical rating scales, neuropsychological assessments, gait and posture analysis, single-photon emission computed tomography, positron emission tomography, and brain magnetic resonance (BMR) were performed at different follow-up times. Peripheral blood levels of inflammatory cytokines were measured before and after cell infusion. Six of the seven treated patients were living 1 year after cell infusion. Asymptomatic spotty lesions were observed at BMR after 24 h in six of the seven treated patients. The last patient in the preliminary cohort (Case 5) exhibited transiently symptomatic BMR ischemic alterations. No severe adverse events were recorded in the last two treated patients. Interleukin-8 serum concentrations decreased in three patients (Case 2, 3, and 4). An adaptive study design, appropriate and up-to-date efficacy measures, adequate sample size estimation, and, possibly, the use of a cellular and/or allogeneic cell sources may help in performing phase II trials in the field.

5.
PLoS One ; 8(12): e83576, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358297

RESUMEN

Helicobacter pylori is cause of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. L-proline is a preferred energy source of the microaerophilic bacterium. Previous analyses revealed that HpputP and HpputA, the genes that are predicted to play a central role in proline metabolism as they encode for the proline transporter and proline dehydrogenase, respectively, are essential for stomach colonization. Here, the molecular basis of proline transport in H. pylori by HpPutP was investigated experimentally for the first time. Measuring radiolabeled substrate transport in H. pylori and E. coli heterologously expressing HpputP as well as in proteoliposomes reconstituted with HpPutP, we demonstrate that the observed proline transport in H. pylori is mediated by HpPutP. HpPutP is specific and exhibits a high affinity for L-proline. Notably, L-proline transport is exclusively dependent on Na(+) as coupling ion, i.e., Na(+)/L-proline symport, reminiscent to the properties of PutP of E. coli even though H. pylori lives in a more acidic environment. Homology model-based structural comparisons and substitution analyses identified amino acids crucial for function. HpPutP-catalyzed proline uptake was efficiently inhibited by the known proline analogs 3,4-dehydro-D,L-proline and L-azetidine-2-carboxylic acid.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Helicobacter pylori/genética , Prolina/metabolismo , Sodio/metabolismo , Simportadores/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Sitios de Unión , Transporte Biológico , Proteínas de Escherichia coli/genética , Helicobacter pylori/metabolismo , Modelos Moleculares , Homología de Secuencia , Relación Estructura-Actividad , Simportadores/química , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA