Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 127(9): e232-e249, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32811295

RESUMEN

RATIONALE: After myocardial infarction, neutrophils rapidly and massively infiltrate the heart, where they promote both tissue healing and damage. OBJECTIVE: To characterize the dynamics of circulating and cardiac neutrophil diversity after infarction. METHODS AND RESULTS: We employed single-cell transcriptomics combined with cell surface epitope detection by sequencing to investigate temporal neutrophil diversity in the blood and heart after murine myocardial infarction. At day 1, 3, and 5 after infarction, cardiac Ly6G+ (lymphocyte antigen 6G) neutrophils could be delineated into 6 distinct clusters with specific time-dependent patterning and proportions. At day 1, neutrophils were characterized by a gene expression profile proximal to bone marrow neutrophils (Cd177, Lcn2, Fpr1), and putative activity of transcriptional regulators involved in hypoxic response (Hif1a) and emergency granulopoiesis (Cebpb). At 3 and 5 days, 2 major subsets of Siglecfhi (enriched for eg, Icam1 and Tnf) and Siglecflow (Slpi, Ifitm1) neutrophils were found. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis in blood and heart revealed that while circulating neutrophils undergo a process of aging characterized by loss of surface CD62L and upregulation of Cxcr4, heart infiltrating neutrophils acquired a unique SiglecFhi signature. SiglecFhi neutrophils were absent from the bone marrow and spleen, indicating local acquisition of the SiglecFhi signature. Reducing the influx of blood neutrophils by anti-Ly6G treatment increased proportions of cardiac SiglecFhi neutrophils, suggesting accumulation of locally aged neutrophils. Computational analysis of ligand/receptor interactions revealed putative pathways mediating neutrophil to macrophage communication in the myocardium. Finally, SiglecFhi neutrophils were also found in atherosclerotic vessels, revealing that they arise across distinct contexts of cardiovascular inflammation. CONCLUSIONS: Altogether, our data provide a time-resolved census of neutrophil diversity and gene expression dynamics in the mouse blood and ischemic heart at the single-cell level, and reveal a process of local tissue specification of neutrophils in the ischemic heart characterized by the acquisition of a SiglecFhi signature.


Asunto(s)
Infarto del Miocardio , Infiltración Neutrófila , Neutrófilos/citología , Neutrófilos/fisiología , Animales , Antígenos Ly/inmunología , Enfermedades de la Aorta/patología , Aterosclerosis/patología , Autoanticuerpos/farmacología , Células de la Médula Ósea , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Comunicación Celular , Senescencia Celular , Mapeo Epitopo/métodos , Adhesiones Focales , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoantígenos/metabolismo , Antígenos Comunes de Leucocito , Lipocalina 2/metabolismo , Macrófagos/fisiología , Ratones , Infarto del Miocardio/sangre , Neutrófilos/metabolismo , Especificidad de Órganos , Receptores de Superficie Celular/metabolismo , Receptores de Formil Péptido/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Bazo/citología , Factores de Tiempo
2.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35950218

RESUMEN

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Asunto(s)
Macrófagos , Infarto del Miocardio , Ratones , Humanos , Animales , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Monocitos/metabolismo , Miocardio/metabolismo , Fagocitosis , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA