Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; : e5197, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822595

RESUMEN

The accurate segmentation of individual muscles is essential for quantitative MRI analysis of thigh images. Deep learning methods have achieved state-of-the-art results in segmentation, but they require large numbers of labeled data to perform well. However, labeling individual thigh muscles slice by slice for numerous volumes is a laborious and time-consuming task, which limits the availability of annotated datasets. To address this challenge, self-supervised learning (SSL) emerges as a promising technique to enhance model performance by pretraining the model on unlabeled data. A recent approach, called positional contrastive learning, exploits the information given by the axial position of the slices to learn features transferable on the segmentation task. The aim of this work was to propose positional contrastive SSL for the segmentation of individual thigh muscles from MRI acquisitions in a population of elderly healthy subjects and to evaluate it on different levels of limited annotated data. An unlabeled dataset of 72 T1w MRI thigh acquisitions was available for SSL pretraining, while a labeled dataset of 52 volumes was employed for the final segmentation task, split into training and test sets. The effectiveness of SSL pretraining to fine-tune a U-Net architecture for thigh muscle segmentation was compared with that of a randomly initialized model (RND), considering an increasing number of annotated volumes (S = 1, 2, 5, 10, 20, 30, 40). Our results demonstrated that SSL yields substantial improvements in Dice similarity coefficient (DSC) when using a very limited number of labeled volumes (e.g., for S $$ S $$ = 1, DSC 0.631 versus 0.530 for SSL and RND, respectively). Moreover, enhancements are achievable even when utilizing the full number of labeled subjects, with DSC = 0.927 for SSL and 0.924 for RND. In conclusion, positional contrastive SSL was effective in obtaining more accurate thigh muscle segmentation, even with a very low number of labeled data, with a potential impact of speeding up the annotation process in clinics.

2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36772409

RESUMEN

BACKGROUND AND OBJECTIVE: Mental workload (MWL) is a relevant construct involved in all cognitively demanding activities, and its assessment is an important goal in many research fields. This paper aims at evaluating the reproducibility and sensitivity of MWL assessment from EEG signals considering the effects of different electrode configurations and pre-processing pipelines (PPPs). METHODS: Thirteen young healthy adults were enrolled and were asked to perform 45 min of Simon's task to elicit a cognitive demand. EEG data were collected using a 32-channel system with different electrode configurations (fronto-parietal; Fz and Pz; Cz) and analyzed using different PPPs, from the simplest bandpass filtering to the combination of filtering, Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). The reproducibility of MWL indexes estimation and the sensitivity of their changes were assessed using Intraclass Correlation Coefficient and statistical analysis. RESULTS: MWL assessed with different PPPs showed reliability ranging from good to very good in most of the electrode configurations (average consistency > 0.87 and average absolute agreement > 0.92). Larger fronto-parietal electrode configurations, albeit being more affected by the choice of PPPs, provide better sensitivity in the detection of MWL changes if compared to a single-electrode configuration (18 vs. 10 statistically significant differences detected, respectively). CONCLUSIONS: The most complex PPPs have been proven to ensure good reliability (>0.90) and sensitivity in all experimental conditions. In conclusion, we propose to use at least a two-electrode configuration (Fz and Pz) and complex PPPs including at least the ICA algorithm (even better including ASR) to mitigate artifacts and obtain reliable and sensitive MWL assessment during cognitive tasks.


Asunto(s)
Electroencefalografía , Carga de Trabajo , Adulto , Humanos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Electrodos
3.
NMR Biomed ; 35(10): e4774, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35587618

RESUMEN

Extraction of intravoxel incoherent motion (IVIM) parameters from noisy diffusion-weighted (DW) images using a biexponential fitting model is computationally challenging, and the reliability of the estimated perfusion-related quantities represents a limitation of this technique. Artificial intelligence can overcome the current limitations and be a suitable solution to advance use of this technique in both preclinical and clinical settings. The purpose of this work was to develop a deep neural network (DNN) approach, trained on numerical simulated phantoms with different signal to noise ratios (SNRs), to improve IVIM parameter estimation. The proposed approach is based on a supervised fully connected DNN having 3 hidden layers, 18 inputs and 3 targets with standardized values. 14 × 103 simulated DW images, based on a Shepp-Logan phantom, were randomly generated with varying SNRs (ranging from 10 to 100). 7 × 103 images (1000 for each SNR) were used for training. Performance accuracy was assessed in simulated images and the proposed approach was compared with the state-of-the-art Bayesian approach and other DNN algorithms. The DNN approach was also evaluated in vivo on a high-field MRI preclinical scanner. Our DNN approach showed an overall improvement in accuracy when compared with the Bayesian approach and other DNN methods in most of the simulated conditions. The in vivo results demonstrated the feasibility of the proposed approach in real settings and generated quantitative results comparable to those obtained using the Bayesian and unsupervised approaches, especially for D and f, and with lower variability in homogeneous regions. The DNN architecture proposed in this work outlines two innovative features as compared with other studies: (1) the use of standardized targets to improve the estimation of parameters, and (2) the implementation of a single DNN to enhance the IVIM fitting at different SNRs, providing a valuable alternative tool to compute IVIM parameters in conditions of high background noise.


Asunto(s)
Inteligencia Artificial , Imagen de Difusión por Resonancia Magnética , Algoritmos , Teorema de Bayes , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Redes Neurales de la Computación , Reproducibilidad de los Resultados
4.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35808250

RESUMEN

Connectivity among different areas within the brain is a topic that has been notably studied in the last decade. In particular, EEG-derived measures of effective connectivity examine the directionalities and the exerted influences raised from the interactions among neural sources that are masked out on EEG signals. This is usually performed by fitting multivariate autoregressive models that rely on the stationarity that is assumed to be maintained over shorter bits of the signals. However, despite being a central condition, the selection process of a segment length that guarantees stationary conditions has not been systematically addressed within the effective connectivity framework, and thus, plenty of works consider different window sizes and provide a diversity of connectivity results. In this study, a segment-size-selection procedure based on fourth-order statistics is proposed to make an informed decision on the appropriate window size that guarantees stationarity both in temporal and spatial terms. Specifically, kurtosis is estimated as a function of the window size and used to measure stationarity. A search algorithm is implemented to find the segments with similar stationary properties while maximizing the number of channels that exhibit the same properties and grouping them accordingly. This approach is tested on EEG signals recorded from six healthy subjects during resting-state conditions, and the results obtained from the proposed method are compared to those obtained using the classical approach for mapping effective connectivity. The results show that the proposed method highlights the influence that arises in the Default Mode Network circuit by selecting a window of 4 s, which provides, overall, the most uniform stationary properties across channels.


Asunto(s)
Mapeo Encefálico , Encéfalo , Algoritmos , Electroencefalografía , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas
5.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770320

RESUMEN

Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Accidente Cerebrovascular , Electroencefalografía , Electromiografía , Humanos
6.
NMR Biomed ; 33(3): e4201, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884712

RESUMEN

The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to estimate slow and fast diffusion coefficients of water molecules in biological tissues, which are used in cancer applications. The most reported fitting approach is a voxel-wise segmented non-linear least square, whereas Bayesian approaches with a direct fit, also considering spatial regularization, were proposed too. In this work a novel segmented Bayesian method was proposed, also in combination with a spatial regularization through a Conditional Autoregressive (CAR) prior specification. The two segmented Bayesian approaches, with and without CAR specification, were compared with two standard least-square and a direct Bayesian fitting methods. All approaches were tested on simulated images and real data of patients with head-and-neck and rectal cancer. Estimation accuracy and maps noisiness were quantified on simulated images, whereas the coefficient of variation and the goodness of fit were evaluated for real data. Both versions of the segmented Bayesian approach outperformed the standard methods on simulated images for pseudo-diffusion (D∗ ) and perfusion fraction (f), whilst the segmented least-square fitting remained the less biased for the diffusion coefficient (D). On real data, Bayesian approaches provided the less noisy maps, and the two Bayesian methods without CAR generally estimated lower values for f and D∗ coefficients with respect to the other approaches. The proposed segmented Bayesian approaches were superior, in terms of estimation accuracy and maps quality, to the direct Bayesian model and the least-square fittings. The CAR method improved the estimation accuracy, especially for D∗ .


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Movimiento (Física) , Teorema de Bayes , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo
7.
Neuroradiology ; 61(9): 1033-1045, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31263922

RESUMEN

PURPOSE: The aim of the paper is to evaluate if advanced dMRI techniques, including diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI), could provide novel insights into the subtle microarchitectural modifications occurring in the corticospinal tract (CST) of stroke patients in subacute and chronic phases. METHODS: Seventeen subjects (age 68 ± 11 years) in the subacute phase (14 ± 3 days post-stroke), 10 of whom rescanned in the chronic phase (231 ± 36 days post-stroke), were enrolled. Images were acquired using a 3-T MRI scanner with a two-shell EPI protocol (20 gradient directions, b = 700 s/mm2, 3 b = 0; 64 gradient directions, b = 2000 s/mm2, 9 b = 0). DTI-, DKI-, and NODDI-derived parameters were calculated in the posterior limb of the internal capsule (PLIC) and in the cerebral peduncle (CP). RESULTS: In the subacute phase, a reduction of FA, AD, and KA values was correlated with an increase of ODI, RD, and AK parameters, in both the ipsilesional PLIC and CP, suggesting that increased fiber dispersion can be the main structural factor. In the chronic phase, a reduction of FA and an increase of ODI persisted in the ipsilesional areas. This was associated with reduced Fic and increased MD, with a concomitant reduction of MK and increase of RD, suggesting that fiber reduction, possibly due to nerve degeneration, could play an important role. CONCLUSIONS: This study shows that advanced dMRI approaches can help elucidate the underpinning architectural modifications occurring in the CST after stroke. Further follow-up studies on bigger cohorts are needed to evaluate if DKI- and NODDI-derived parameters might be proposed as complementary biomarkers of brain microstructural alterations.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Tractos Piramidales/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Isquemia Encefálica/complicaciones , Enfermedad Crónica , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/etiología , Factores de Tiempo
8.
NMR Biomed ; 31(6): e3922, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29637672

RESUMEN

The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise.


Asunto(s)
Ejercicio Físico/fisiología , Imagen por Resonancia Magnética , Movimiento (Física) , Músculo Esquelético/fisiología , Perfusión , Adulto , Artefactos , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino
9.
Biotechnol Appl Biochem ; 64(3): 443-448, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27067406

RESUMEN

Bacterial-derived DNA fragments (BDNAs) have been shown to be present in a dialysis fluid, to pass through dialyzer membranes, and to induce interleukin 6 (IL-6) in mononuclear cells. DNA fragments are thought to be derived from microorganisms inhabiting hemodialysis water and fluid. The primary aim of the present study was to develop two degenerated TaqMan real-time quantitative-PCR (Q-PCR) for detection of a broad range of bacterial DNA that specifically detect 16S ribosomal DNA (rDNA) (862 and 241 bp) and evaluate the efficiency of the Bellco Selecta resin to capture the BDNAs in the dialysis fluid. For this purpose, we decided to compare measurements of unfragmented samples (9.8 × 105 Escherichia coli genome) with artificially fragmented DNA samples. We assessed two broad-range real-time PCR targeting bacterial 16S rRNA genes for detection of fragmented and unfragmented bacterial DNA in the dialytic fluid and demonstrated that Bellco Selecta resin is capable of retaining these types of bacterial DNA.


Asunto(s)
ADN Bacteriano/genética , ADN Ribosómico/genética , Escherichia coli/genética , Genes de ARNr , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
10.
Magn Reson Med ; 75(2): 873-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25754538

RESUMEN

PURPOSE: To propose and assess a new method that automatically extracts a three-dimensional (3D) geometric model of the thoracic aorta (TA) from 3D cine phase contrast MRI (PCMRI) acquisitions. METHODS: The proposed method is composed of two steps: segmentation of the TA and creation of the 3D geometric model. The segmentation algorithm, based on Level Set, was set and applied to healthy subjects acquired in three different modalities (with and without SENSE reduction factors). Accuracy was evaluated using standard quality indices. The 3D model is characterized by the vessel surface mesh and its centerline; the comparison of models obtained from the three different datasets was also carried out in terms of radius of curvature (RC) and average tortuosity (AT). RESULTS: In all datasets, the segmentation quality indices confirmed very good agreement between manual and automatic contours (average symmetric distance < 1.44 mm, DICE Similarity Coefficient > 0.88). The 3D models extracted from the three datasets were found to be comparable, with differences of less than 10% for RC and 11% for AT. CONCLUSION: Our method was found effective on PCMRI data to provide a 3D geometric model of the TA, to support morphometric and hemodynamic characterization of the aorta.


Asunto(s)
Aorta Torácica/anatomía & histología , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Adulto , Algoritmos , Voluntarios Sanos , Hemodinámica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA