Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Virol J ; 10: 306, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24119320

RESUMEN

BACKGROUND: West Nile virus (WNV) and Usutu virus (USUV), both belonging to the genus Flavivirus, are emerging in Italy as important human and animal pathogens. Migratory birds are involved in the spread of Flaviviruses over long distances, particularly from Africa to Europe. Once introduced, these viruses can be further be dispersed by short-distance migratory and resident bird species. Thus far, there is still a considerable knowledge gap on the role played by different bird species in the ecology and transmission mechanisms of these viruses. The Region of Trentino-Alto Adige (north-eastern Italy) is located on the migratory route of many of the short- and long-distance migratory birds that cross the Alps, connecting northern Europe and western Asia with southern Europe and Africa. Until now, only a silent circulation of WNV and USUV within the territory of the Province of Trento has been confirmed by serological screening, whilst no cases of infected humans or animals have so far been reported. However, continuous spillover events of both viruses have been reported in neighbouring Regions. The aim of this study was to monitor the circulation of WNV and USUV in Trentino-Alto Adige, in order to detect if active virus shedding occurs in migratory birds captured during their seasonal movements and to evaluate the role that different bird species could play in the spreading of these viruses. METHODS: We carried out a biomolecular survey on oral and cloacal swabs collected from migratory birds during seasonal migrations. Birds belonging to 18 transaharian and 21 intrapaleartic species were examined during spring (n = 176) and autumn (n = 146), and were tested using a generic nested-PCR. RESULTS: All samples tested negative for Flaviviruses. The possible causes of unapparent shedding, along with ecological and epidemiological implications are discussed. CONCLUSIONS: The lack of detection of active virus shedding in these bird species does not exclude the circulation of these viruses within the Trentino-Alto Adige region, as reported in previous studies. The possible ecological implications are discussed.


Asunto(s)
Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/virología , Aves/virología , Virus de la Encefalitis Japonesa (Subgrupo)/aislamiento & purificación , Encefalitis por Arbovirus/veterinaria , Infecciones por Flavivirus/veterinaria , África , Animales , Cloaca/virología , Encefalitis por Arbovirus/epidemiología , Encefalitis por Arbovirus/virología , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Humanos , Italia , Boca/virología
2.
PeerJ ; 9: e12560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950536

RESUMEN

Unravelling the environmental factors driving species distribution and abundance is crucial in ecology and conservation. Both climatic and land cover factors are often used to describe species distribution/abundance, but their interrelations have been scarcely investigated. Climatic factors may indeed affect species both directly and indirectly, e.g., by influencing vegetation structure and composition. We aimed to disentangle the direct and indirect effects (via vegetation) of local temperature on bird abundance across a wide elevational gradient in the European Alps, ranging from montane forests to high-elevation open areas. In 2018, we surveyed birds by using point counts and collected fine-scale land cover and temperature data from 109 sampling points. We used structural equation modelling to estimate direct and indirect effects of local climate on bird abundance. We obtained a sufficient sample for 15 species, characterized by a broad variety of ecological requirements. For all species we found a significant indirect effect of local temperatures via vegetation on bird abundance. Direct effects of temperature were less common and were observed in seven woodland/shrubland species, including only mountain generalists; in these cases, local temperatures showed a positive effect, suggesting that on average our study area is likely colder than the thermal optimum of those species. The generalized occurrence of indirect temperature effects within our species set demonstrates the importance of considering both climate and land cover changes to obtain more reliable predictions of future species distribution/abundance. In fact, many species may be largely tracking suitable habitat rather than thermal niches, especially among homeotherm organisms like birds.

3.
Sci Rep ; 10(1): 5747, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238868

RESUMEN

Information about distribution and habitat use of organisms is crucial for conservation. Bird distribution within the breeding season has been usually considered static, but this assumption has been questioned. Within-season movements may allow birds to track changes in habitat quality or to adjust site choice between subsequent breeding attempts. Such movements are especially likely in temperate mountains, given the substantial environmental heterogeneity and changes occurring during bird breeding season. We investigated the within-season movements of breeding songbirds in the European Alps in spring-summer 2018, using repeated point counts and dynamic occupancy models. For all the four species for which we obtained sufficient data, changes in occupancy during the season strongly indicated the occurrence of within-season movements. Species occupancy changed during the season according to fine-scale vegetation/land-cover types, while microclimate (mean temperature) affected initial occupancy in two species. The overall occupancy rate increased throughout the season, suggesting the settlement of new individuals coming from outside the area. A static distribution cannot be assumed during the breeding season for songbirds breeding in temperate mountains. This needs to be considered when planning monitoring and conservation of Alpine birds, as within-season movements may affect the proportion of population/distribution interested by monitoring or conservation programs.


Asunto(s)
Distribución Animal , Pájaros Cantores/fisiología , Migración Animal , Animales , Conservación de los Recursos Naturales , Ecosistema , Femenino , Masculino , Microclima , Reproducción , Estaciones del Año
4.
Vector Borne Zoonotic Dis ; 20(9): 692-702, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32487013

RESUMEN

Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.


Asunto(s)
Parechovirus/aislamiento & purificación , Infecciones por Picornaviridae/veterinaria , Animales , Peso Corporal , Eulipotyphla , Europa (Continente)/epidemiología , Parechovirus/clasificación , Parechovirus/genética , Filogenia , Infecciones por Picornaviridae/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roedores , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA