Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 39(4): 1677-1696, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36163569

RESUMEN

The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.


Asunto(s)
Apoptosis , Necroptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Caspasa 8/metabolismo , Caspasa 8/farmacología , Muerte Celular , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/farmacología
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108390

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.


Asunto(s)
Interleucina-6 , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Iridoides/farmacología , Iridoides/uso terapéutico , Iridoides/metabolismo , Pulmón/metabolismo , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Proteína Quinasa C-delta/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569348

RESUMEN

Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.


Asunto(s)
Antiasmáticos , Asma , Hipersensibilidad , Panax , Animales , Ratones , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Interleucina-4/metabolismo , Asma/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo , Hipersensibilidad/metabolismo , Transducción de Señal , Inflamación/metabolismo , Inmunoglobulina E , Panax/metabolismo , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 24(8)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108220

RESUMEN

The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells.


Asunto(s)
Ferroptosis , Humanos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Frutas/metabolismo , Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
5.
Cytokine ; 131: 155116, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388485

RESUMEN

Longifolioside A is an iridoid glucoside compound isolated from Pseudolysimachion rotundum var. subintegrum, which has been used in traditional herbal medicines to treat respiratory inflammatory diseases. Logifolioside A is a potent antioxidant; however, its underlying pharmacological mechanisms of action in inflammatory diseases are unknown. Here, we investigated the inhibitory effects of longifolioside A in lipopolysaccharide (LPS)-stimulated toll-like receptor 4 (TLR4) signal transduction systems using human THP-1 macrophages and HEK293 cells stably expressing human TLR4 protein (293/HA-hTLR4). Longifolioside A significantly reduced the release of inflammatory cytokines such as interleukin (IL)-6, -8, and tumor necrosis factor (TNF)-α in LPS-stimulated THP-1 macrophages. Furthermore, longifolioside A inhibited the expression of inflammatory mediator genes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 that produce nitric oxide (NO) and prostaglandin E2 (PGE2), respectively. Longifolioside A suppressed the phosphorylation of PKCδ, IRAK4, IKKα/ß, IκBα, and mitogen-activated protein (MAP) kinases (ERK 1/2 and JNK, but not p38), thereby inactivating the nuclear localization of NF-κB and AP-1, and thus decreasing the expression of inflammatory response genes. Notably, longifolioside A disrupted the interaction between human TLR4 and the TIR domain-containing adaptor protein (TIRAP), an early step during TLR4 activation, thereby reducing IL-8 secretion in 293/HA-hTLR4 cells. This inhibitory effect was comparable to that of TAK-242 (a TLR4 inhibitor, or resatorvid). Our results indicate that longifolioside A prevents inflammatory response by suppressing TLR4 activation required for NF-κB and AP-1 activation.


Asunto(s)
Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Proteína Quinasa C-delta/antagonistas & inhibidores , Receptor Toll-Like 4/antagonistas & inhibidores , Citocinas/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/enzimología , Macrófagos/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteína Quinasa C-delta/metabolismo , Receptores de Interleucina-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células THP-1 , Factor de Transcripción AP-1/metabolismo
6.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333989

RESUMEN

The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Ubiquitina-Proteína Ligasas/química
7.
Cytokine ; 108: 247-254, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29396047

RESUMEN

Fisetin (3,7,3',4'-tetrahydroxyflavone), a natural flavonoid, is a therapeutic agent for respiratory inflammatory diseases such as chronic obstructive pulmonary disease (COPD). However, detailed molecular mechanisms regarding the target protein of fisetin remain unknown. Fisetin significantly reduces tumour necrosis factor alpha (TNF-α)-induced interleukin (IL)-8 levels by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors. We show that fisetin prevents interactions between protein kinase C (PKC)δ and TNF receptor-associated factor 2 (TRAF2), thereby inhibiting the inhibitor of kappa B kinase (IKK)/NF-κB downstream signalling cascade. Furthermore, we found that fisetin directly binds to PKCδ in vitro. Our findings provide evidence that fisetin inhibits the TNF-α-activated IKK/NF-κB cascade by targeting PKCδ, thereby mediating inflammatory diseases such as COPD. These data suggest that fisetin is a good therapeutic drug for the treatment of inflammatory lung diseases, such as COPD, by inhibiting the TNF-α/NF-κB signalling pathway.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Flavonoides/farmacología , Interleucina-8/metabolismo , FN-kappa B/antagonistas & inhibidores , Proteína Quinasa C-delta/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Células Epiteliales/enzimología , Flavonoles , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , Factor 2 Asociado a Receptor de TNF/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(40): 12426-31, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392552

RESUMEN

The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.


Asunto(s)
Proteínas Portadoras/genética , Diferenciación Celular/genética , Páncreas Exocrino/metabolismo , Páncreas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Immunoblotting , Hibridación in Situ , Microscopía Confocal , Morfolinos/genética , Mutación , Páncreas/citología , Páncreas/embriología , Páncreas Exocrino/citología , Páncreas Exocrino/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Biochem Biophys Res Commun ; 490(4): 1282-1286, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28684314

RESUMEN

Melanin pigments are the primary contributors for the skin color. They are produced in melanocytes and then transferred to keratinocytes, eventually giving various colors on skin surface. Although many depigmenting and/or skin-lightening agents have been developed, there is still a growing demand on materials for reducing pigmentation. We attempted to find materials for depigmentation and/or skin-lightening using the small molecule compounds commercially available, and found that 5-iodotubercidin had inhibitory potential on pigmentation. When HM3KO melanoma cells were treated with 5-iodotubercidin, pigmentation was dramatically reduced. The 5-iodotubercidin decreased the protein level for pigmentation-related molecules such as MITF, tyrosinase, and TRP1. In addition, 5-iodotubercidin decreased the phosphorylation of CREB, while increased the phosphorylation of AKT and ERK. These data suggest that 5-iodotubercidin inhibits melanogenesis via the regulation of intracellular signaling related with pigmentation. Finally, 5-iodotubercidin markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. Together, these data suggest that 5-iodotubercidin can be developed as a depigmenting and/or skin-lightening agent.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Melanocitos/efectos de los fármacos , Pigmentación/efectos de los fármacos , Preparaciones para Aclaramiento de la Piel/farmacología , Piel/efectos de los fármacos , Tubercidina/análogos & derivados , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Embrión no Mamífero/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Melanocitos/citología , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/antagonistas & inhibidores , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Fosforilación/efectos de los fármacos , Pigmentación/genética , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Piel/metabolismo , Tripsina/genética , Tripsina/metabolismo , Tubercidina/farmacología , Pez Cebra
10.
Cytokine ; 91: 57-64, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28011397

RESUMEN

Pseudolysimachion rotundum var. subintegrum is utilized as a traditional herbal remedy to treat cough, bronchitis, and asthma in Korea, Russia, China, and Europe. Here, we show that 3-methoxy-catalposide, a novel iridoide glycoside isolated from P. rotundum var. subintegrum has the anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophages. The chemical structure of 3-methoxy-catalposide was determined by NMR, optical rotation and HRESIMS. In in vitro experiment, RAW264.7 cells were treated with 3-methoxy-catalposide for 2h before exposure to LPS for different times. Inflammatory gene and protein expressions were assayed using RT-PCR and ELISA. Activities of signal proteins were examined using western analysis. Our results demonstrated that 3-methoxy-catalposide significantly inhibits the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated by LPS, thereby suppressing the release of prostaglandin E2 (PGE2) and nitric oxide (NO). Moreover, 3-methoxy-catalposide markedly reduced the LPS-induced expression of pro-inflammatory genes, such as interleukin (IL)-6, IL-1ß, and TNF-α. Further, 3-methoxy-catalposide inhibited both LPS-induced activation of three MAP kinases (ERK 1/2, JNK, and p38) and the nuclear translocation of NF-κB and AP-1. These results support that 3-methoxy-catalposide may be a promising candidate for inflammation treatment.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/inmunología , Glucósidos Iridoides/farmacología , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Monocinas/inmunología , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Macrófagos/patología , Ratones , FN-kappa B/inmunología , Células RAW 264.7 , Factor de Transcripción AP-1/inmunología
11.
Biochem Biophys Res Commun ; 472(2): 373-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26952657

RESUMEN

Rbfox3, an RNA-binding fox protein, binds to the antibody to pan-neuronal marker, neuronal nuclei (NeuN). Rbfox3 is expressed in neural tissues across a wide range of species including mammals, birds, and amphibians. However, the molecular identity of Rbfox3 in the zebrafish is largely unknown. In this study, we cloned two zebrafish Rbfox3 genes, Rbfox3a and Rbfox3b. We also cloned the Rbfox3-d31 isoform, which excludes a 93-nucleotide alternative exon within the RNA-recognition motif in both, Rbfox3a and Rbfox3b. Multiple protein sequence alignment revealed that the amino acid sequence for residues 1-20 of the zebrafish Rbfox3, which is the epitope region of NeuN antibody, was different from that of other species. Therefore, NeuN antibody lost its function as a neuronal marker antibody in zebrafish. Reverse transcriptase-polymerase chain reaction showed that both Rbfox3-d31 transcripts were abundant in the early blastula stage, after which they dramatically reduced, suggesting that these isoforms exist mainly as maternal transcripts. In contrast, full-length Rbfox3 transcripts were detected from the 24 h post-fertilization embryo, expression was also maintained at a constant level. Furthermore, full-length Rbfox3-expressing cells were located within the central nervous system during later stages of the zebrafish embryo. Our study provides insight into the molecular structure of zebrafish Rbfox3 as a step towards genetic association studies investigating the developmental role of Rbfox3.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Embrión no Mamífero/química , Datos de Secuencia Molecular , Relación Estructura-Actividad
12.
BMC Complement Altern Med ; 16: 223, 2016 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-27424198

RESUMEN

BACKGROUND: In this study, the anti-melanogenesis efficacy of clinically used herbal prescription LASAP-C, which consists of four herbal medicines-Rehmanniae Radix Crudus, Lycii Fructus, Scutellariae Radix, and Angelicae Dahuricae Radix, was investigated. METHODS: The chemical profile of LASAP-C was established by conducting ultra-performance liquid chromatography-electrospray ionization-mass spectrometry. Anti-melanogenic efficacy was evaluated by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells. In vivo evaluation was performed by using zebrafish model. RESULTS: Molecular evidences suggested that melanin synthesis was inhibited via the down-regulation of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells treated with LASAP-C. The anti-melanogenesis efficacy was also confirmed in vivo by using the zebrafish model. CONCLUSION: The results of this study provide strong evidences that LASAP-C can be used as an active component in cosmeceutical products for reducing excess pigmentation in the human skin.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Melaninas/biosíntesis , Melanoma Experimental/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Oxidorreductasas Intramoleculares/metabolismo , Melanoma Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Preparaciones Farmacéuticas , Pigmentación/efectos de los fármacos , Pez Cebra
13.
EMBO J ; 30(14): 2894-907, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21666599

RESUMEN

The caudal homeobox (cdx) gene family is critical for specification of caudal body formation and erythropoiesis. In zebrafish, cdx4 expression is controlled by the Wnt pathway, but the molecular mechanism of this regulation is not fully understood. Here, we provide evidence that Tcf3 suppresses cdx4 expression through direct binding to multiple sites in the cdx4 gene regulatory region. Tcf3 requires corepressor molecules such as Groucho (Gro)/TLE and HDAC1 for activity. Using zebrafish embryos and cultured mammalian cells, we show that the transcription factor E4f1 derepresses cdx4 by dissociating corepressor proteins from Tcf3 without inhibiting its binding to cis-regulatory sites in the DNA. Further, the E3 ubiquitin ligase Lnx2b, acting as a scaffold protein irrespective of its enzymatic activity, counteracts the effects of E4f1. We propose that the modulation of Tcf3 repressor function by E4f1 assures precise and robust regulation of cdx4 expression in the caudal domain of the embryo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Western Blotting , Tipificación del Cuerpo , Células Cultivadas , Inmunoprecipitación de Cromatina , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Proteínas de Homeodominio/metabolismo , Inmunoprecipitación , Luciferasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Mol Ther Methods Clin Dev ; 32(1): 101202, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38374964

RESUMEN

The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.

15.
Exp Mol Med ; 56(4): 922-934, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556544

RESUMEN

Skeletal muscle aging results in the gradual suppression of myogenesis, leading to muscle mass loss. However, the specific role of cardiolipin in myogenesis has not been determined. This study investigated the crucial role of mitochondrial cardiolipin and cardiolipin synthase 1 (Crls1) in age-related muscle deterioration and myogenesis. Our findings demonstrated that cardiolipin and Crls1 are downregulated in aged skeletal muscle. Moreover, the knockdown of Crls1 in myoblasts reduced mitochondrial mass, activity, and OXPHOS complex IV expression and disrupted the structure of the mitochondrial cristae. AAV9-shCrls1-mediated downregulation of Crls1 impaired muscle regeneration in a mouse model of cardiotoxin (CTX)-induced muscle damage, whereas AAV9-mCrls1-mediated Crls1 overexpression improved regeneration. Overall, our results highlight that the age-dependent decrease in CRLS1 expression contributes to muscle loss by diminishing mitochondrial quality in skeletal muscle myoblasts. Hence, modulating CRLS1 expression is a promising therapeutic strategy for mitigating muscle deterioration associated with aging, suggesting potential avenues for developing interventions to improve overall muscle health and quality of life in elderly individuals.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Regeneración , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/patología , Enfermedades Musculares/genética , Envejecimiento/metabolismo , Desarrollo de Músculos , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Humanos , Cardiolipinas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Masculino , Mioblastos/metabolismo
16.
Zebrafish ; 21(1): 53-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377344

RESUMEN

Since its introduction as a model organism in the 1980s, the use of zebrafish (Danio rerio) in research has expanded worldwide. Despite its now widespread use in research, guidelines to safeguard the ethical treatment of zebrafish, particularly with regard to euthanasia and humane endpoint practices, remain inadequate. One well-recognized example is the use of excess tricaine methanesulfonate (MS-222) as a means to euthanize zebrafish, regardless of life stage. In this study, through nationwide expert elicitation, we provide a detailed account of zebrafish research practices within the Republic of Korea and the challenges of implementing appropriate methods for euthanasia as a humane endpoint, with many opting for hypothermic shock. We report a local expert consensus for establishing national guidelines to improve zebrafish welfare and good research practice. Suggestions and recommendations for national guidelines were offered. Taken together, our findings raise awareness broadly among zebrafish research practitioners in the field, offer an accurate account of the welfare and treatment of zebrafish in research within the Republic of Korea, and advocate for the development and implementation of national guidelines. As such, our study is useful as a model to adopt the expert elicitation approach to investigate, quantify, and address welfare concerns in zebrafish research, and to establish best practice guidelines.


Asunto(s)
Anestésicos , Perciformes , Animales , Pez Cebra , Eutanasia Animal/métodos , República de Corea
17.
Life Sci ; 339: 122413, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219919

RESUMEN

AIMS: The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD: To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS: Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE: These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.


Asunto(s)
Clostridiales , Trastornos del Conocimiento , Disfunción Cognitiva , Ratones , Humanos , Animales , Anciano , Trastornos del Conocimiento/metabolismo , Encéfalo/metabolismo , Envejecimiento/metabolismo
18.
J Exp Clin Cancer Res ; 42(1): 338, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093368

RESUMEN

BACKGROUND: Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS: KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS: In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION: These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Espectrometría de Masas en Tándem , Pez Cebra , Apoptosis , Proteínas Proto-Oncogénicas c-mdm2/genética , Muerte Celular , Mutación , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo
19.
Heliyon ; 9(9): e20154, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809903

RESUMEN

Background: Methyl lucidone (ML), a methyl derivative of lucidone, has anti-inflammatory properties. However, the molecular mechanisms that reduce the inflammatory effect of ML in human lung epithelial cells remain unkown. This study aimed to elucidate the molecular mechanisms underlying the anti-inflammatory effect of ML. Methods: Four compounds (ML, methyl linderone, kanakugiol, and linderone) from Lindera erythrocarpa Makino were evaluated for their ability to reduce MUC5AC secretion levels in phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells using ELISA. The expression and secretion levels of inflammatory response-related proteins were analyzed using quantitative reverse transcription-PCR, ELISA, and western blotting. To determine whether ML directly regulates TGF-ß-activated kinase 1 (TAK1), we performed an in vitro kinase assay. Results: ML treatment effectively reduced the levels of inflammatory cytokines, including interleukin-1ß and TNF-α, increased by stimulation. Furthermore, ML downregulated the pathway cascade of both IκB kinase (IKK)/NF-κB and p38 mitogen-activated protein (MAP) kinase/CREB by inhibiting the upstream kinase TAK1. An in vitro kinase analysis confirmed that ML treatment significantly reduced the kinase activity of TAK1. Conclusion: ML pretreatment repressed the PMA-stimulated inflammation reaction by reducing the TAK1-mediated IKK/NF-κB and p38 MAP kinase/CREB signaling. These findings suggest that ML may improve respiratory health and can be used as a dietary supplement or functional food to prevent inflammatory lung diseases.

20.
J Ginseng Res ; 46(3): 496-504, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600779

RESUMEN

Background: Cigarette smoke (CS) is considered a principal cause of chronic obstructive pulmonary disease (COPD) and is associated with mucus hypersecretion and airway inflammation. Ginsenoside compound K (CK), a product of ginsenoside metabolism, has various biological activities. Studies on the effects of CK for the treatment of COPD and mucus hypersecretion, including the underlying signaling mechanism, have not yet been conducted. Methods: To study the protective effects and molecular mechanism of CK, phorbol 12-myristate 13-acetate (PMA)-induced human airway epithelial (NCI-H292) cells were used as a cellular model of airway inflammation. An experimental mouse COPD model was also established via CS inhalation and intranasal administration of lipopolysaccharide. Mucin 5AC (MUC5AC), monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), and interleukin-6 secretion, as well as elastase activity and reactive oxygen species production, were determined through enzyme-linked immunosorbent assay. Inflammatory cell influx and mucus secretion in mouse lung tissues were estimated using hematoxylin and eosin and periodic acid-schiff staining, respectively. PKCδ and its downstream signaling molecules were analyzed via western blotting. Results: CK prevented the secretion of MUC5AC and TNF-α in PMA-stimulated NCI-H292 cells and exhibited a protective effect in COPD mice via the suppression of inflammatory mediators and mucus secretion. These effects were accompanied by an inactivation of PKCδ and related signaling in vitro and in vivo. Conclusion: CK suppressed pulmonary inflammation and mucus secretion in COPD mouse model through PKC regulation, highlighting the compound's potential as a useful adjuvant in the prevention and treatment of COPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA