Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cytokine ; 177: 156543, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373365

RESUMEN

Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.


Asunto(s)
Benzaldehídos , Leishmaniasis Visceral , Leishmaniasis , Ratones , Animales , Micelas , Interleucina-12 , Ratones Endogámicos BALB C
2.
Exp Parasitol ; 260: 108743, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513973

RESUMEN

Treatment against leishmaniasis presents problems, mainly due to the toxicity of the drugs, high cost, and the emergence of resistant strains. A previous study showed that two vanillin-derived synthetic molecules, 3s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], presented antileishmanial activity against Leishmania infantum, L. amazonensis, and L. braziliensis species. In the present work, 3s and 3t were evaluated to treat L. amazonensis-infected mice. Molecules were used pure or incorporated into Poloxamer 407-based micelles. In addition, amphotericin B (AmpB) and its liposomal formulation, Ambisome®, were used as control. Animals received the treatment and, one and 30 days after, they were euthanized to evaluate immunological, parasitological, and biochemical parameters. Results showed that the micellar compositions (3s/Mic and 3t/Mic) induced significant reductions in the lesion mean diameter and parasite load in the infected tissue and distinct organs, as well as a specific and significant antileishmanial Th1-type immune response, which was based on significantly higher levels of IFN-γ, IL-12, nitrite, and IgG2a isotype antibodies. Drug controls showed also antileishmanial action; although 3s/Mic and 3t/Mic have presented better and more significant parasitological and immunological data, which were based on significantly higher IFN-γ production and lower parasite burden in treated animals. In addition, significantly lower levels of urea, creatinine, alanine transaminase, and aspartate transaminase were found in mice treated with 3s/Mic and 3t/Mic, when compared to the others. In conclusion, results suggest that 3s/Mic and 3t/Mic could be considered as therapeutic candidates to treat against L. amazonensis infection.


Asunto(s)
Antiprotozoarios , Benzaldehídos , Leishmania mexicana , Ratones Endogámicos BALB C , Micelas , Animales , Ratones , Benzaldehídos/farmacología , Benzaldehídos/química , Leishmania mexicana/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Leishmaniasis Cutánea/tratamiento farmacológico , Femenino , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Poloxámero/química , Poloxámero/farmacología , Masculino , Bazo/parasitología
3.
Cytokine ; 164: 156143, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774730

RESUMEN

Leishmania amazonensis can cause a wide spectrum of the clinical manifestations of leishmaniasis in humans. The development of new therapeutics is a long and expensive task; in this context, drug repositioning could be considered a strategy to identify new biological actions of known products. In the present study, ivermectin (IVE) was tested against distinct Leishmania species able to cause disease in humans. In vitro experiments showed that IVE was effective to reduce the infection degree and parasite load in Leishmania donovani- and L. amazonensis-infected macrophages that were treated with it. In addition, using the culture supernatant of treated macrophages, higher production of IFN-γ and IL-12 and lower levels of IL-4 and IL-10 were found. Then, IVE was used in a pure form or incorporated into Poloxamer 407-based polymeric micelles (IVE/M) for the treatment of L. amazonensis-infected BALB/c mice. Animals (n = 16 per group) were infected and later received saline, empty micelles, amphotericin B (AmpB), IVE, or IVE/M. They were euthanized at one (n = 8 per group) and 30 (n = 8 per group) days after treatment and, in both endpoints, immunological, parasitological, and biochemical evaluations were performed. Results showed that both IVE and IVE/M induced higher levels of IFN-γ, IL-12, GM-CSF, nitrite, and IgG2a antibodies, as well as higher IFN-γ expression evaluated by RT-qPCR in spleen cell cultures. Such animals showed low organic toxicity, as well as significant reductions in the lesion's average diameter and parasite load in their infected tissue, spleen, liver, and draining lymph node. The efficacy was maintained 30 days post-therapy, while control mice developed a polarized Th2-type response and high parasite load. In this context, IVE could be considered as a new candidate to be applied in future studies for the treatment against distinct Leishmania species.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis Visceral , Leishmaniasis , Humanos , Ratones , Animales , Micelas , Ivermectina/farmacología , Ivermectina/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Reposicionamiento de Medicamentos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Interleucina-12/farmacología , Ratones Endogámicos BALB C , Leishmaniasis Visceral/tratamiento farmacológico
4.
Parasitol Res ; 122(12): 2917-2931, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768367

RESUMEN

Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Leishmaniasis , Saponinas , Humanos , Animales , Ratones , Micelas , Leucocitos Mononucleares/metabolismo , Proteínas Recombinantes , Leishmaniasis Visceral/parasitología , Adyuvantes Inmunológicos , Citocinas/metabolismo , Vacunación , Ratones Endogámicos BALB C , Antígenos de Protozoos/genética
5.
Cytokine ; 153: 155865, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339043

RESUMEN

Leishmania virulence proteins should be considered as vaccine candidates against disease, since they are involved in developing infection in mammalian hosts. In a previous study, a Leishmania guanosine-5'-triphosphate (GTP)-binding protein was identified as a potential parasite virulence factor. In the present work, the gene encoding GTP was cloned and the recombinant protein (rGTP) was evaluated as a vaccine candidate against Leishmania infantum infection. The protein was associated with saponin (rGTP/Sap) or Poloxamer 407-based micelles (rGTP/Mic) as adjuvants, and protective efficacy was investigated in BALB/c mice after parasite challenge. Both rGTP/Sap and rGTP/Mic compositions induced a Th1-type immune response in vaccinated animals, with significantly higher levels of IFN-γ, IL-12, IL-2, TNF-α, GM-CSF, nitrite, specific IgG2a isotype antibody and positive lymphoproliferation, when compared to the control groups. This response was accompanied by significantly lower parasite load in the spleens, livers, bone marrows and draining lymph nodes of the animals. Immunological and parasitological evaluations indicated that rGTP/Mic induced a more polarized Th1-type response and higher reduction in the organ parasitism, and with lower hepatotoxicity, when compared to the use of rGTP/Sap. In conclusion, our preliminary data suggest that rGTP could be considered for further development as a vaccine candidate to protect against VL.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Leishmaniasis , Animales , Antígenos de Protozoos , Proteínas Portadoras , Guanosina , Guanosina Trifosfato , Mamíferos , Ratones , Ratones Endogámicos BALB C , Micelas , Poloxámero , Polifosfatos , Proteínas Recombinantes
6.
Parasite Immunol ; 44(8): e12921, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35437797

RESUMEN

Treatment against visceral leishmaniasis (VL) presents problems by the toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy of Leishmania LiHyC protein was evaluated in a murine model against Leishmania infantum infection. LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after the challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of interferon-gamma (IFN-γ), interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T-cell subtypes producing IFN-γ, tumor necrosis factor-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in the spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.


Asunto(s)
Leishmania infantum , Vacunas contra la Leishmaniasis , Leishmaniasis Visceral , Saponinas , Animales , Antígenos de Protozoos , Interferón gamma , Interleucina-12 , Ratones , Ratones Endogámicos BALB C , Micelas , Proteínas Recombinantes
7.
Exp Parasitol ; 233: 108205, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34968460

RESUMEN

Visceral leishmaniasis (VL) is a neglected tropical disease found in tropical and subtropical regions in the world. The therapeutics used for the treatment against disease presents problems, mainly related to drug toxicity, route of administration, high cost and/or by emergence of resistant strains. In this context, the search for alternative antileishmanial candidates is desirable. Recently, a naphthoquinone derivative namely 2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone or Flau-A showed an effective in vitro biological action against Leishmania infantum. In the present study, the efficacy of this naphthoquinone derivative was evaluated in an in vivo infection model. BALB/c mice (n = 12 per group) were infected and later received saline or were treated with empty micelles (B/Mic), free Flau-A or it incorporated in Poloxamer 407-based micelles (Flau-A/Mic). The products were administered subcutaneously in the infected animals, which were then euthanized one (n = 6 per group) and 15 (n = 6 per group) days post-therapy, when immunological and parasitological evaluations were performed. Results showed that animals treated with Flau-A or Flau-A/Mic produced significantly higher levels of antileishmanial IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibody, when compared to data found in the control (saline and B/Mic) groups; which showed significantly higher levels of parasite-specific IL-4, IL-10 and IgG1 antibody. In addition, animals receiving free Flau-A or Flau-A/Mic presented also significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, when compared to the controls. A low hepatic and renal toxicity was also found. Overall, Flau-A/Mic showed better immunological and parasitological results, when compared to the use of free molecule. In conclusion, preliminary data suggest that this composition could be considered in future studies as promising therapeutic candidate against VL.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Naftoquinonas/química , Naftoquinonas/uso terapéutico , Animales , Antiprotozoarios/farmacología , Femenino , Leishmania infantum/genética , Leishmania infantum/fisiología , Ratones , Ratones Endogámicos BALB C , Micelas , Naftoquinonas/farmacología , Carga de Parásitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Bazo/parasitología
8.
Microb Pathog ; 151: 104745, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33485994

RESUMEN

Treatment for visceral leishmaniasis (VL) is hampered mainly by the toxicity and/or high cost of antileishmanial drugs. What is more, variability on sensitivity and/or specificity of diagnostic tests hinders effective disease management. In this context, prophylactic vaccination should be considered as a strategy to prevent disease. In the present study, immunogenicity of the Leishmania eukaryotic Elongation Factor-1 beta (EF1b) protein, classified as a Leishmania virulence factor, was evaluated in vitro and in vivo and tested, for the first time, as a vaccine candidate against Leishmania infantum infection. The antigen was administered as DNA vaccine or as recombinant protein (rEF1b) delivered in saponin. BALB/c mice immunization with a DNA plasmid and recombinant protein plus saponin induced development of specific Th1-type immunity, characterized by high levels of IFN-γ, IL-12, GM-CSF, both T cell subtypes and antileishmanial IgG2a isotype antibodies, before and after infection. This immunological response to the vaccines was corroborated further by parasitological analysis of the vaccinated and then challenged mice, which showed significant reductions in the parasite load in their liver, spleen, bone marrow and draining lymph nodes, when compared to the controls. Vaccination using rEF1b/saponin induced a more robust Th1 response and parasitological protection when compared to the DNA vaccine. Furthermore, in vitro analysis of lymphoproliferation, IFN-γ and IL-10 levels in human PBMC cultures showed as well development of a specific Th1-type response. In conclusion, data suggest that EF1b could be a promising vaccine candidate to protect against L. infantum infection.


Asunto(s)
Leishmania infantum , Vacunas contra la Leishmaniasis , Animales , Antígenos de Protozoos/genética , Leucocitos Mononucleares , Ratones , Ratones Endogámicos BALB C , Factores de Elongación de Péptidos
9.
Med Microbiol Immunol ; 210(2-3): 133-147, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33870453

RESUMEN

Treatment against visceral leishmaniasis (VL) is mainly hampered by drug toxicity, long treatment regimens and/or high costs. Thus, the identification of novel and low-cost antileishmanial agents is urgent. Acarbose (ACA) is a specific inhibitor of glucosidase-like proteins, which has been used for treating diabetes. In the present study, we show that this molecule also presents in vitro and in vivo specific antileishmanial activity against Leishmania infantum. Results showed an in vitro direct action against L. infantum promastigotes and amastigotes, and low toxicity to mammalian cells. In addition, in vivo experiments performed using free ACA or incorporated in a Pluronic® F127-based polymeric micelle system called ACA/Mic proved effective for the treatment of L. infantum-infected BALB/c mice. Treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes when compared to the controls, as well as the development of antileishmanial Th1-type humoral and cellular responses based on high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibodies. In addition, ACA or ACA-treated animals suffered from low organ toxicity. Treatment with ACA/Mic outperformed treatments using either Miltefosine or free ACA based on parasitological and immunological evaluations performed one and 15 days post-therapy. In conclusion, data suggest that the ACA/Mic is a potential therapeutic agent against L. infantum and merits further consideration for VL treatment.


Asunto(s)
Acarbosa/farmacología , Acarbosa/uso terapéutico , Inmunidad , Leishmania infantum/efectos de los fármacos , Leishmania infantum/inmunología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/inmunología , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Reposicionamiento de Medicamentos , Femenino , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento
10.
Exp Parasitol ; 221: 108059, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338468

RESUMEN

Treatment for visceral leishmaniasis (VL) is hindered mainly by the toxicity and/or high cost of therapeutic drugs. In addition, parasite resistance has been registered. Thus, there is an urgent need for the identification of novel, effective and low-cost antileishmanial agents. Since drug discovery is a long and expensive process, drug repositioning for treatment of leishmaniasis should be considered. In the present study, Ivermectin (IVE), a broad-spectrum drug used for treatment of parasitic diseases, was evaluated in vitro and in vivo against Leishmania infantum species. Results in vitro showed that IVE presented 50% Leishmania and macrophage inhibitory concentrations (IC50 and CC50, respectively) of 3.64 ± 0.48 µM and 427.50 ± 17.60 µM, respectively, with a selectivity index (SI) of 117.45; whereas Amphotericin B (AmpB), which was used as control, showed IC50 and CC50 values of 0.12 ± 0.05 µM and 1.06 ± 0.23 µM, respectively, with a corresponding SI of 8.90. Treatment with IVE effectively reduced the infection percentage and parasite burden in infected and treated macrophages and displayed a prophylactic activity by inhibiting macrophage infection with pre-treated parasites. Furthermore, preliminary studies suggested that IVE targets the parasite's mitochondria. Activity of IVE in its free format or incorporated into Pluronic® F127-based polymeric micelles (IVE/Mic) was also evaluated in vivo as a treating drug for L. infantum-infected BALB/c mice. Miltefosine was used as a control. Results showed that Miltefosine, IVE and IVE/Mic-treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as well as development of an antileishmanial Th1-type immune response one and 15 days after treatment. Notably, IVE/Mic showed a better parasitological and immunological response in comparison to other alternative treatments. In conclusion, results suggest that IVE/Mic could be considered in future studies as a therapeutic alternative to treat VL.


Asunto(s)
Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ivermectina/farmacología , Ivermectina/uso terapéutico , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Anfotericina B/farmacología , Animales , Antiprotozoarios/toxicidad , Eritrocitos/efectos de los fármacos , Femenino , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Concentración 50 Inhibidora , Ivermectina/toxicidad , Macrófagos Peritoneales/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Bazo/parasitología
11.
Parasitol Res ; 120(1): 321-335, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191446

RESUMEN

Treatment for visceral leishmaniasis (VL) is hampered mainly by drug toxicity, their high cost, and parasite resistance. Drug development is a long and pricey process, and therefore, drug repositioning may be an alternative worth pursuing. Cardenolides are used to treat cardiac diseases, especially those obtained from Digitalis species. In the present study, cardenolide digitoxigenin (DIGI) obtained from a methanolic extract of Digitalis lanata leaves was tested for its antileishmanial activity against Leishmania infantum species. Results showed that 50% Leishmania and murine macrophage inhibitory concentrations (IC50 and CC50, respectively) were of 6.9 ± 1.5 and 295.3 ± 14.5 µg/mL, respectively. With amphotericin B (AmpB) deoxycholate, used as a control drug, values of 0.13 ± 0.02 and 0.79 ± 0.12 µg/mL, respectively, were observed. Selectivity index (SI) values were of 42.8 and 6.1 for DIGI and AmpB, respectively. Preliminary studies suggested that the mechanism of action for DIGI is to cause alterations in the mitochondrial membrane potential, to increase the levels of reactive oxygen species and induce accumulation of lipid bodies in the parasites. DIGI was incorporated into Pluronic® F127-based polymeric micelles, and the formula (DIGI/Mic) was used to treat L. infantum-infected mice. Miltefosine was used as a control drug. Results showed that animals treated with either miltefosine, DIGI, or DIGI/Mic presented significant reductions in the parasite load in their spleens, livers, bone marrows, and draining lymph nodes, as well as the development of a specific Th1-type response, when compared with the controls. Results obtained 1 day after treatment were corroborated with data corresponding to 15 days after therapy. Importantly, treatment with DIGI/Mic induced better parasitological and immunological responses when compared with miltefosine- and DIGI-treated mice. In conclusion, DIGI/Mic has the potential to be used as a therapeutic agent to protect against L. infantum infection, and it is therefore worth of consideration in future studies addressing VL treatment.


Asunto(s)
Antiprotozoarios/uso terapéutico , Digitoxigenina/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Poloxámero/uso terapéutico , Anfotericina B/uso terapéutico , Animales , Ácido Desoxicólico/uso terapéutico , Combinación de Medicamentos , Femenino , Hígado/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Especies Reactivas de Oxígeno , Bazo/parasitología
12.
Cell Immunol ; 356: 104194, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827943

RESUMEN

Most studies evaluating vaccine candidates against visceral leishmaniasis (VL) have used parasite promastigote-expressed antigens; however, Leishmania proteins expressed in the amastigote forms should be considered, since few hours after infection this stage comes into contact with the host immune system and is responsible for the development of the disease. In this context, in the present study, a Leishmania amastigote-specific hypothetical protein, called LiHyJ, was evaluated as a recombinant protein plus saponin as an adjuvant or DNA vaccine to protect against VL. The vaccine effect was evaluated by means of the evaluation of immunological and parasitological analyses performed in BALB/c mice against Leishmania infantum infection. Results showed that rLiHyJ/saponin and DNA LiHyJ induced significantly higher levels of anti-protein and anti-parasite IFN-γ, IL-12, GM-CSF, and IgG2a isotype antibodies, which were associated with a low presence of IL-4 and IL-10. DNA vaccination induced higher IFN-γ production, mainly by CD8+ T cells, while rLiHyJ/saponin stimulated the production of this cytokine, mainly by CD4+ T cells. The parasite load evaluated in distinct organs showed that both immunization schedules significantly reduced organic parasitism, when compared to the controls. Similar results were found in the immunological and parasitological assays when using the recombinant protein or DNA, although the vaccination with rLiHyJ plus saponin induced a slightly higher Th1 response and lower parasite load, when compared to the use of DNA plasmid. The protein also proved to be immunogenic when peripheral blood mononuclear cells of treated VL patients and healthy subjects were in vitro stimulated, since higher IFN-γ and lower IL-4 and IL-10 levels were found in the culture supernatants. In conclusion, LiHyJ should be considered in future studies as a vaccine candidate to protect against VL.


Asunto(s)
Leishmania/inmunología , Vacunas contra la Leishmaniasis/inmunología , Vacunas de ADN/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adulto , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , ADN/inmunología , Femenino , Humanos , Leishmania/patogenicidad , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología
13.
Cytokine ; 129: 155031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32062145

RESUMEN

The control measures against visceral leishmaniasis (VL) include a precise diagnosis of disease, the treatment of human cases, and reservoir and vector controls. However, these are insufficient to avoid the spread of the disease in specific countries worldwide. As a consequence, prophylactic vaccination could be interesting, although no effective candidate against human disease is available. In the present study, the Leishmania infantum amastin protein was evaluated regarding its immunogenicity and protective efficacy against experimental VL. BALB/c mice immunized with subcutaneous injections of the recombinant protein with or without liposome/saponin (Lip/Sap) as an adjuvant. After immunization, half of the animals per group were euthanized and immunological evaluations were performed, while the others were challenged with L. infantum promastigotes. Forty-five days after infection, the animals were euthanized and parasitological and immunological evaluations were performed. Results showed the development of a Th1-type immune response in rAmastin-Lip and rAmastin-Sap/vaccinated mice, before and after infection, which was based on the production of protein and parasite-specific IFN-γ, IL-12, GM-CSF, and nitrite, as well as the IgG2a isotype antibody. CD4+ T cells were mainly responsible for IFN-γ production in vaccinated mice, which also presented significant reductions in parasitism in their liver, spleen, draining lymph nodes, and bone marrow. In addition, PBMC cultures of treated VL patients and healthy subjects stimulated with rAmastin showed lymphoproliferation and higher IFN-γ production. In conclusion, the present study shows the first case of an L. infantum amastin protein associated with distinct delivery systems inducing protection against L. infantum infection and demonstrates an immunogenic effect of this protein in human cells.


Asunto(s)
Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos/farmacología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Femenino , Humanos , Inmunidad/inmunología , Interferón gamma/inmunología , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/parasitología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Células TH1/inmunología , Células TH1/parasitología
14.
Parasite Immunol ; 42(12): e12784, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32772379

RESUMEN

AIMS: Treatment for visceral leishmaniasis (VL) is hampered by the toxicity and/or high cost of drugs, as well as by emergence of parasite resistance. Therefore, there is an urgent need for new antileishmanial agents. METHODS AND RESULTS: In this study, the antileishmanial activity of a diprenylated flavonoid called 5,7,3,4'-tetrahydroxy-6,8-diprenylisoflavone (CMt) was tested against Leishmania infantum and L amazonensis species. Results showed that CMt presented selectivity index (SI) of 70.0 and 165.0 against L infantum and L amazonensis promastigotes, respectively, and of 181.9 and 397.8 against respective axenic amastigotes. Amphotericin B (AmpB) showed lower SI values of 9.1 and 11.1 against L infantum and L amazonensis promastigotes, respectively, and of 12.5 and 14.3 against amastigotes, respectively. CMt was effective in the treatment of infected macrophages and caused alterations in the parasite mitochondria. L infantum-infected mice treated with miltefosine, CMt alone or incorporated in polymeric micelles (CMt/Mic) presented significant reductions in the parasite load in distinct organs, when compared to the control groups. An antileishmanial Th1-type cellular and humoral immune response were developed one and 15 days after treatment, with CMt/Mic-treated mice presenting a better protective response. CONCLUSION: Our data suggest that CMt/Mic could be evaluated as a chemotherapeutic agent against VL.


Asunto(s)
Antiprotozoarios/administración & dosificación , Leishmaniasis Visceral/tratamiento farmacológico , Animales , Antiprotozoarios/química , Antiprotozoarios/farmacología , Femenino , Flavonoides/administración & dosificación , Flavonoides/química , Flavonoides/farmacología , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmania infantum/crecimiento & desarrollo , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos
15.
Parasitol Res ; 119(8): 2609-2622, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32535734

RESUMEN

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a prophylactic vaccination is urgently required. In the present study, a Leishmania protein called LiHyE, which was suggested recently as an antigenic marker for canine and human VL, was evaluated regarding its immunogenicity and protective efficacy in BALB/c mice against Leishmania infantum infection. In addition, the protein was used to stimulate peripheral blood mononuclear cells (PBMCs) from VL patients before and after treatment, as well as from healthy subjects. Vaccination results showed that the recombinant (rLiHyE) protein associated with liposome or saponin induced effective protection in the mice, since significant reductions in the parasite load in spleen, liver, draining lymph nodes, and bone marrow were found. The parasitological protection was associated with Th1-type cell response, since high IFN-γ, IL-12, and GM-CSF levels, in addition to low IL-4 and IL-10 production, were found. Liposome induced a better parasitological and immunological protection than did saponin. Experiments using PBMCs showed rLiHyE-stimulated lymphoproliferation in treated patients' and healthy subjects' cells, as well as high IFN-γ levels in the cell supernatant. In conclusion, rLiHyE could be considered for future studies as a vaccine candidate against VL.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de Protozoos/administración & dosificación , Leishmania infantum/inmunología , Leishmaniasis Visceral/prevención & control , Animales , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunogenicidad Vacunal , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Células TH1/inmunología , Vacunación
16.
Parasitology ; 146(3): 322-332, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30198459

RESUMEN

In the current study, phage-exposed mimotopes as targets against tegumentary leishmaniasis (TL) were selected by means of bio-panning cycles employing sera of TL patients and healthy subjects, besides the immune stimulation of peripheral blood mononuclear cells (PBMCs) collected from untreated and treated TL patients and healthy subjects. The clones were evaluated regarding their specific interferon-γ (IFN-γ) and interleukin-4 (IL-4) production in the in vitro cultures, and selectivity and specificity values were calculated, and those presenting the best results were selected for the in vivo experiments. Two clones, namely A4 and A8, were identified and used in immunization protocols from BALB/c mice to protect against Leishmania amazonensis infection. Results showed a polarized Th1 response generated after vaccination, being based on significantly higher levels of IFN-γ, IL-2, IL-12, tumour necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF); which were associated with lower production of specific IL-4, IL-10 and immunoglobulin G1 (IgG1) antibodies. Vaccinated mice presented significant reductions in the parasite load in the infected tissue and distinct organs, when compared with controls. In conclusion, we presented a strategy to identify new mimotopes able to induce Th1 response in PBMCs from TL patients and healthy subjects, and that were successfully used to protect against L. amazonensis infection.


Asunto(s)
Leishmania mexicana/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/inmunología , Leucocitos Mononucleares/inmunología , Adulto , Animales , Bacteriófagos/inmunología , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Linfocitos T/inmunología , Adulto Joven
17.
Cell Immunol ; 331: 67-77, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29871740

RESUMEN

Visceral leishmaniasis (VL) is a fatal disease when acute and untreated. The treatment against this disease is long and presents toxicity and/or high costs. Moreover, parasite resistance has been increasing. Therefore, alternative control measures to avoid the spread of disease should be considered. It is accepted that the development of the T helper (Th)1 immune response, based on the production of pro-inflammatory cytokines, is required for the control of parasites. Although recombinant protein-based vaccines have been tested against VL, they require supplementation with immune adjuvants. In addition, there is a scarcity of studies that comparatively evaluate the efficacy of the immunogens when administered by different delivery systems in mammalian hosts. In the present study, a Leishmania hypothetical protein, LiHyR, was cloned and evaluated by immunization as a plasmid deoxyribonucleic acid (DNA) vaccine or in a recombinant format plus saponin against Leishmania infantum infection. Results showed that both vaccination regimens induced a Th1 cell-based immunity, since high levels of interferon-gamma (IFN-γ), interleukin (IL)-2, IL-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α) were found, and were associated with the low production of IL-4, IL-10, and anti-parasite immunoglobulin (IgG)1 isotype. In addition, significant reductions in the parasite load were found in the evaluated organs of the DNA LiHyR or rLiHyR/saponin-vaccinated animals. No significant difference was achieved between groups vaccinated with DNA or the recombinant protein. The antigen proved to be also immunogenic in human peripheral blood mononuclear cells (PBMCs) collected from healthy subjects and from untreated and treated VL patients. A higher IgG2 isotype was also found in sera samples of these subjects, thus demonstrating its possible use as a human vaccine. This study demonstrates the protective efficacy of a new Leishmania protein against VL, when it is administered as a DNA vaccine or a recombinant protein plus saponin, and points out its use as a human vaccine against disease.


Asunto(s)
Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Vacunas de ADN/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Humanos , Leishmania infantum/efectos de los fármacos , Leishmania infantum/fisiología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Recombinantes/administración & dosificación , Homología de Secuencia de Aminoácido , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Vacunación/métodos , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
18.
Cell Immunol ; 323: 59-69, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29128045

RESUMEN

Visceral leishmaniasis (VL) represents a serious public health problem, as Leishmania infantum is one of main disease causative agents in the Americas. In a previous immunoproteomic study, the prohibitin (PHB) protein was identified in L. infantum promastigote and amastigote extracts by antibodies in asymptomatic and symptomatic VL dog sera. This protein was found to be highly conserved between different Leishmania spp., but it presented a low identity with amino acid sequences of other organisms. The aim of the present study was to evaluate the cellular response induced by the recombinant PHB (rPHB) protein in BALB/c mice, as well as in PBMCs purified from untreated and treated VL patients, as well as to evaluate its protective efficacy against an infection by L. infantum promastigotes. Our data showed that there was a Th1 cellular response to rPHB, based on high levels of IFN-γ, IL-12, and GM-CSF in the immunized animals, as well as a proliferative response specific to the protein and higher IFN-γ levels induced in PBMCs from individuals who had recovered from the disease. The protection was represented by significant reductions in the parasite load in the animals' spleen, liver, bone marrow, and draining lymph nodes, as compared to results found in the control groups. In addition, an anti-rPHB serology, using a canine and human serological panel, showed a high performance of this protein when diagnosing VL based on high sensitivity and specificity values, as compared to results found for the rA2 antigen and the soluble Leishmania antigenic extract. Our data suggest that PHB has a potential application for the diagnosis of canine and human VL through antibody detection, as well as an application as a vaccine candidate to protect against disease.


Asunto(s)
Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/inmunología , Proteínas Represoras/inmunología , Animales , Antígenos de Protozoos/inmunología , Perros , Humanos , Leishmania infantum/inmunología , Leishmania infantum/metabolismo , Leishmaniasis Visceral/metabolismo , Ratones , Ratones Endogámicos BALB C , Prohibitinas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Células TH1/inmunología , Vacunas/metabolismo
19.
Cytokine ; 111: 131-139, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142534

RESUMEN

Leishmania proteins have been evaluated as vaccine candidates against leishmaniasis; however, most antigens present low immunogenicity and need to be added with immune adjuvants. A low number of licensed adjuvants exist on the market today; therefore, research conducted to produce new products is desirable. The present study sought to evaluate the immunogenicity and protective efficacy of a recombinant Leishmania hypothetical protein, namely LiHyR, administered with saponin or liposomes in BALB/c mice. Immunological and parasitological parameters were evaluated, and results showed significant protection against Leishmania infantum infection produced by both compositions in the immunized animals; however, this was not identified when the antigen was used alone. In addition, the liposomal formulation was more effective in inducing a polarized Th1 response in the vaccinated animals, which was maintained after challenge and reflected by lower parasitism found in all evaluated organs when the limiting dilution technique and RT-PCR assay were employed. The protected animals showed higher levels of protein and parasite-specific IFN-γ IL-2, IL-12, GM-CSF, and TNF-α, which were evaluated by capture ELISA and flow cytometry, in addition to a higher production of anti-protein and anti-parasite IgG2a antibodies, both before and after challenge. The Lip/rLiHyR combination induced higher IFN-γ production through both CD4+ and CD8+ T cell subtypes. Results indicate the possibility of using the LiHyR, containing a liposomal formulation, as a vaccine candidate against visceral leishmaniasis.


Asunto(s)
Citocinas/inmunología , Inmunogenicidad Vacunal , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/farmacología , Leishmaniasis Visceral/prevención & control , Proteínas Protozoarias/farmacología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/patología , Liposomas , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología
20.
Exp Parasitol ; 186: 24-35, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29448040

RESUMEN

Amphotericin B (Amp) has been well-successfully used to treat against Leishmania infection, although high toxicity has been found in patients. In the present study, Amp was administered in Leishmania infantum-infected BALB/c mice by three distinct delivery systems aiming to compare their efficacy against challenge infection, as well as their side effects in a murine visceral leishmaniasis (VL) model. This product was administered in a Poloxamer P407 (Pluronic® F127)-based polymeric micelle system (Amp/M), in the Ambisome® formulation (Lip-Amp) or in a free format (free Amp). Glucantime® (Gluc) was used as a comparative drug. Aiming to evaluate different endpoints of the treatments, the efficacy of the compounds was investigated one and 15-days after the therapeutic regimens, determining the parasite load by a limiting dilution assay and a quantitative PCR (qPCR) technique, as well as evaluating the immune response generated in the infected and treated animals. In the results, Amp/M or Lip-Amp-treated mice presented the best outcomes, since significant parasite load reductions were found in the evaluated organs, as well as a parasite-specific Th1 immune response was observed in the animals. In addition, no hepatic or renal damage was found in these mice. On the other hand, free Amp or Gluc induced toxicity in the animals, which was associated with a low Th1 immune response. Comparatively, Amp/M was the most effective drug in our experimental model, and results showed that the Amp-carrying system could be considered as a future alternative in studies against VL.


Asunto(s)
Anfotericina B/administración & dosificación , Antiprotozoarios/administración & dosificación , Sistemas de Liberación de Medicamentos/normas , Leishmaniasis Visceral/tratamiento farmacológico , Anfotericina B/toxicidad , Animales , Antiprotozoarios/toxicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Riñón/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Hígado/efectos de los fármacos , Meglumina/administración & dosificación , Antimoniato de Meglumina , Ratones , Ratones Endogámicos BALB C , Micelas , Nitritos/metabolismo , Compuestos Organometálicos/administración & dosificación , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA