Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 193(6): 813-828, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871751

RESUMEN

The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with cytomegalovirus promoter (pCMV)-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More importantly, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway was up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.


Asunto(s)
Quinasa del Factor 2 de Elongación , Músculo Esquelético , Ratas , Animales , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo
2.
Acta Neuropathol ; 143(6): 713-731, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522298

RESUMEN

Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-ß pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.


Asunto(s)
Atrofia Muscular Espinal , Receptores Androgénicos , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Homeostasis , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Receptores Androgénicos/genética , Proteína Smad4
3.
Mol Cell Proteomics ; 19(12): 2047-2068, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994316

RESUMEN

The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.


Asunto(s)
Progresión de la Enfermedad , Distrofia Muscular de Duchenne/genética , Mutación/genética , Proteómica , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Reproducibilidad de los Resultados , Regulación hacia Arriba
4.
RNA Biol ; 18(7): 1048-1062, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33472516

RESUMEN

Duchenne muscular dystrophy (DMD) is a currently incurable X-linked neuromuscular disorder, characterized by progressive muscle wasting and premature death, typically as a consequence of cardiac failure. DMD-causing mutations in the dystrophin gene are highly diverse, meaning that the development of a universally-applicable therapy to treat all patients is very challenging. The leading therapeutic strategy for DMD is antisense oligonucleotide-mediated splice modulation, whereby one or more specific exons are excluded from the mature dystrophin mRNA in order to correct the translation reading frame. Indeed, three exon skipping oligonucleotides have received FDA approval for use in DMD patients. Second-generation exon skipping drugs (i.e. peptide-antisense oligonucleotide conjugates) exhibit enhanced potency, and also induce dystrophin restoration in the heart. Similarly, multiple additional antisense oligonucleotide drugs targeting various exons are in clinical development in order to treat a greater proportion of DMD patient mutations. Relatively recent advances in the field of genome engineering (specifically, the development of the CRISPR/Cas system) have provided multiple promising therapeutic approaches for the RNA-directed genetic correction of DMD, including exon excision, exon reframing via the introduction of insertion/deletion mutations, disruption of splice signals to promote exon skipping, and the templated correction of point mutations by seamless homology directed repair or base editing technology. Potential limitations to the clinical translation of the splice modulation and gene editing approaches are discussed, including drug delivery, the importance of uniform dystrophin expression in corrected myofibres, safety issues (e.g. renal toxicity, viral vector immunogenicity, and off-target gene editing), and the high cost of therapy.


Asunto(s)
Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN , Animales , Sistemas CRISPR-Cas , Distrofina/deficiencia , Exones , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Miocardio/metabolismo , Miocardio/patología , Fármacos Neuromusculares/uso terapéutico , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo
5.
Mol Ther ; 28(12): 2527-2539, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33171139

RESUMEN

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Terapia Genética/métodos , Distrofia Miotónica/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , ARN Guía de Kinetoplastida/genética , Resultado del Tratamiento , Expansión de Repetición de Trinucleótido/genética
6.
RNA Biol ; 16(5): 696-706, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836828

RESUMEN

Multiple studies have described extracellular microRNAs (ex-miRNAs) as being remarkably stable despite the hostile extracellular environment, when stored at 4ºC or lower. Here we show that many ex-miRNAs are rapidly degraded when incubated at 37ºC in the presence of serum (thereby simulating physiologically relevant conditions). Stability varied widely between miRNAs, with half-lives ranging from ~1.5 hours to more than 13 hours. Notably, ex-miRNA half-lives calculated in two different biofluids (murine serum and C2C12 mouse myotube conditioned medium) were highly similar, suggesting that intrinsic sequence properties are a determining factor in miRNA stability. By contrast, ex-miRNAs associated with extracellular vesicles (isolated by size exclusion chromatography) were highly stable. The release of ex-miRNAs from C2C12 myotubes was measured over time, and mathematical modelling revealed miRNA-specific release kinetics. While some ex-miRNAs reached the steady state in cell culture medium within 24 hours, the extracellular level of miR-16 did not reach equilibrium, even after 3 days in culture. These findings are indicative of miRNA-specific release and degradation kinetics with implications for the utility of ex-miRNAs as biomarkers, and for the potential of ex-miRNAs to transfer gene regulatory information between cells.


Asunto(s)
Vesículas Extracelulares/genética , MicroARNs/química , MicroARNs/genética , Animales , Línea Celular , Medios de Cultivo Condicionados/química , Femenino , Humanos , Ratones , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/citología , Preservación Biológica , Estabilidad del ARN , Suero/química , Temperatura
7.
Hum Mol Genet ; 25(18): 3960-3974, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466195

RESUMEN

MyomiRs are muscle-specific microRNAs (miRNAs) that regulate myoblast proliferation and differentiation. Extracellular myomiRs (ex-myomiRs) are highly enriched in the serum of Duchenne Muscular Dystrophy (DMD) patients and dystrophic mouse models and consequently have potential as disease biomarkers. The biological significance of miRNAs present in the extracellular space is not currently well understood. Here we demonstrate that ex-myomiR levels are elevated in perinatal muscle development, during the regenerative phase that follows exercise-induced myoinjury, and concomitant with myoblast differentiation in culture. Whereas ex-myomiRs are progressively and specifically released by differentiating human primary myoblasts and C2C12 cultures, chemical induction of apoptosis in C2C12 cells results in indiscriminate miRNA release. The selective release of myomiRs as a consequence of cellular differentiation argues against the idea that they are solely waste products of muscle breakdown, and suggests they may serve a biological function in specific physiological contexts. Ex-myomiRs in culture supernatant and serum are predominantly non-vesicular, and their release is independent of ceramide-mediated vesicle secretion. Furthermore, ex-myomiRs levels are reduced in aged dystrophic mice, likely as a consequence of chronic muscle wasting. In conclusion, we show that myomiR release accompanies periods of myogenic differentiation in cell culture and in vivo. Serum myomiR abundance is therefore a function of the regenerative/degenerative status of the muscle, overall muscle mass, and tissue expression levels. These findings have implications for the use of ex-myomiRs as biomarkers for DMD disease progression and monitoring response to therapy.


Asunto(s)
MicroARNs/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Espacio Extracelular/genética , Humanos , Ratones , MicroARNs/sangre , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Mioblastos/patología , Especificidad de Órganos , Cultivo Primario de Células
8.
Mol Ther ; 25(12): 2705-2714, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28882451

RESUMEN

Small activating RNAs (saRNAs) are short double-stranded oligonucleotides that selectively increase gene transcription. Here, we describe the development of an saRNA that upregulates the transcription factor CCATT/enhancer binding protein alpha (CEBPA), investigate its mode of action, and describe its development into a clinical candidate. A bioinformatically directed nucleotide walk around the CEBPA gene identified an saRNA sequence that upregulates CEBPA mRNA 2.5-fold in human hepatocellular carcinoma cells. A nuclear run-on assay confirmed that this upregulation is a transcriptionally driven process. Mechanistic experiments demonstrate that Argonaute-2 (Ago2) is required for saRNA activity, with the guide strand of the saRNA shown to be associated with Ago2 and localized at the CEBPA genomic locus using RNA chromatin immunoprecipitation (ChIP) assays. The data support a sequence-specific on-target saRNA activity that leads to enhanced CEBPA mRNA transcription. Chemical modifications were introduced in the saRNA duplex to prevent activation of the innate immunity. This modified saRNA retains activation of CEBPA mRNA and downstream targets and inhibits growth of liver cancer cell lines in vitro. This novel drug has been encapsulated in a liposomal formulation for liver delivery, is currently in a phase I clinical trial for patients with liver cancer, and represents the first human study of an saRNA therapeutic.


Asunto(s)
Neoplasias Hepáticas/genética , ARN Bicatenario/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Células Cultivadas , Biología Computacional/métodos , Células Hep G2 , Humanos , Neoplasias Hepáticas/terapia , Interferencia de ARN , ARN Mensajero/genética
9.
Hum Mol Genet ; 24(23): 6756-68, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26385637

RESUMEN

Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD. Notably, 3272 proteins were quantifiable and 525 identified as differentially expressed in mdx muscle (P < 0.01). Therapeutic restoration of dystrophin by exon skipping induced widespread shifts in protein and mRNA expression towards wild-type expression levels, whereas the miRNome was largely unaffected. Comparison analyses between datasets showed that protein and mRNA ratios were only weakly correlated (r = 0.405), and identified a multitude of differentially affected cellular pathways, upstream regulators and predicted miRNA-target interactions. This study provides fundamental new insights into gene expression and regulation in dystrophic muscle.


Asunto(s)
Distrofina/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Terapia Genética , Masculino , Ratones , Ratones Endogámicos mdx , MicroARNs/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/terapia , Mutación , Proteómica , ARN Mensajero/metabolismo
10.
Hum Mol Genet ; 24(17): 4916-32, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26060189

RESUMEN

Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Conectina/metabolismo , Distrofias Musculares/metabolismo , Proteómica , Adolescente , Adulto , Animales , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Conectina/sangre , Creatina Quinasa , Modelos Animales de Enfermedad , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos mdx , Distrofias Musculares/sangre , Distrofias Musculares/terapia , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/metabolismo , Proteómica/métodos , Resultado del Tratamiento , Adulto Joven
11.
Nucleic Acids Res ; 41(20): 9500-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945935

RESUMEN

Extracellular microRNAs (miRNAs) are promising biomarkers of the inherited muscle wasting condition Duchenne muscular dystrophy, as they allow non-invasive monitoring of either disease progression or response to therapy. In this study, serum miRNA profiling reveals a distinct extracellular miRNA signature in dystrophin-deficient mdx mice, which shows profound dose-responsive restoration following dystrophin rescue. Extracellular dystrophy-associated miRNAs (dystromiRs) show dynamic patterns of expression that mirror the progression of muscle pathology in mdx mice. Expression of the myogenic miRNA, miR-206 and the myogenic transcription factor myogenin in the tibialis anterior muscle were found to positively correlate with serum dystromiR levels, suggesting that extracellular miRNAs are indicators of the regenerative status of the musculature. Similarly, extracellular dystromiRs were elevated following experimentally-induced skeletal muscle injury and regeneration in non-dystrophic mice. Only a minority of serum dystromiRs were found in extracellular vesicles, whereas the majority were protected from serum nucleases by association with protein/lipoprotein complexes. In conclusion, extracellular miRNAs are dynamic indices of pathophysiological processes in skeletal muscle.


Asunto(s)
MicroARNs/sangre , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/sangre , Animales , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Regeneración
12.
Adv Exp Med Biol ; 887: 15-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26662984

RESUMEN

MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded RNA molecules that primarily function to negatively regulate gene expression at the post-transcriptional level. miRNAs have thus been implicated in the regulation of a wide variety of normal cell functions and pathophysiological conditions. The miRNA machinery consists of a series of protein complexes which act to: (1) cleave the precursor-miRNA hairpin from its primary transcript (i.e. DROSHA and DGCR8); (2) traffic the miRNA hairpin between nucleus and cytoplasm (i.e. XPO5); (3) remove the loop sequence of the hairpin by a second nucleolytic cleavage reaction (i.e. DICER1); (4) facilitate loading of the mature miRNA sequence into an Argonaute protein (typically AGO2) as part of the RNA-Induced Silencing Complex (RISC); (5) guide the loaded RISC complex to complementary, or semi-complementary, target transcripts and (6) facilitate gene silencing via one of several possible mechanisms.


Asunto(s)
Proteínas Argonautas/metabolismo , Carboxipeptidasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Carioferinas/metabolismo , MicroARNs/metabolismo , Ribonucleasa III/metabolismo , Animales , Proteínas Argonautas/química , Carboxipeptidasas/química , ARN Helicasas DEAD-box/química , Regulación de la Expresión Génica , Humanos , Carioferinas/química , MicroARNs/química , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , División del ARN , Transporte de ARN , Ribonucleasa III/química
13.
Adv Exp Med Biol ; 848: 169-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25757621

RESUMEN

The Human Immunodeficiency Virus (HIV) belongs to the subfamily of lentiviruses that are characterized by long incubation periods and chronic, persistent infection. The virus integrates into the genome of infected CD4+ cells and, in a subpopulation of cells, adopts a transcriptionally silent state, a process referred to a viral latency. This property makes it exceedingly difficult to therapeutically target the virus and eradicate infection. If left untreated, the inexorable demise of the infected individual's immune system ensues, a causal result of Acquired Immunodeficiency Syndrome (AIDS). Latently infected cells provide a reservoir that maintains viral infection indefinitely. In this chapter we explore the role of noncoding RNAs in HIV infection and in the establishment and maintenance of viral latency. Both short and long noncoding RNAs are endogenous modulators of epigenetic regulation in human cells and play an active role in gene expression. Lastly, we explore therapeutic modalities based on expressed RNAs that are capable of countering infection, transcriptionally regulating the virus, and suppressing or activating the latent state.


Asunto(s)
Terapia Genética/métodos , Infecciones por VIH/terapia , VIH-1/fisiología , ARN no Traducido/genética , Latencia del Virus , Animales , Enfermedad Crónica , Infecciones por VIH/genética , VIH-1/genética , Humanos , Terapia Molecular Dirigida/métodos , Interferencia de ARN/fisiología , Transcripción Genética , Latencia del Virus/genética
14.
Biol Proced Online ; 16(1): 5, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24629058

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short RNA molecules which regulate gene expression in eukaryotic cells, and are abundant and stable in biofluids such as blood serum and plasma. As such, there has been heightened interest in the utility of extracellular miRNAs as minimally invasive biomarkers for diagnosis and monitoring of a wide range of human pathologies. However, quantification of extracellular miRNAs is subject to a number of specific challenges, including the relatively low RNA content of biofluids, the possibility of contamination with serum proteins (including RNases and PCR inhibitors), hemolysis, platelet contamination/activation, a lack of well-established reference miRNAs and the biochemical properties of miRNAs themselves. Protocols for the detection and quantification of miRNAs in biofluids are therefore of high interest. RESULTS: The following protocol was validated by quantifying miRNA abundance in C57 (wild-type) and dystrophin-deficient (mdx) mice. Important differences in miRNA abundance were observed depending on whether blood was taken from the jugular or tail vein. Furthermore, efficiency of miRNA recovery was reduced when sample volumes greater than 50 µl were used. CONCLUSIONS: Here we describe robust and novel procedures to harvest murine serum/plasma, extract biofluid RNA, amplify specific miRNAs by RT-qPCR and analyze the resulting data, enabling the determination of relative and absolute miRNA abundance in extracellular biofluids with high accuracy, specificity and sensitivity.

16.
Nat Rev Drug Discov ; 22(11): 917-934, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652974

RESUMEN

Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.


Asunto(s)
Distrofia Muscular de Duchenne , Niño , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Codón de Terminación , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/genética , Mutación
17.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38105945

RESUMEN

Femto-seq is a novel nanoscale optical method that can be used to obtain DNA sequence information from targeted regions around a specific locus or other nuclear regions of interest. Two-photon excitation is used to photobiotinylate femtoliter volumes of chromatin within the nucleus, allowing for subsequent isolation and sequencing of DNA, and bioinformatic mapping of any nuclear region of interest in a select set of cells from a heterogenous population.

18.
Mol Ther Nucleic Acids ; 33: 511-528, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37602275

RESUMEN

Extracellular vesicles (EVs) have been implicated in the regulation of myogenic differentiation. C2C12 murine myoblast differentiation was reduced following treatment with GW4869 or heparin (to inhibit exosome biogenesis and EV uptake, respectively). Conversely, treatment with C2C12 myotube-conditioned medium enhanced myogenic differentiation. Ultrafiltration-size exclusion liquid chromatography (UF-SEC) was used to isolate EVs and non-EV extracellular protein in parallel from C2C12 myoblast- and myotube-conditioned medium. UF-SEC-purified EVs promoted myogenic differentiation at low doses (≤2 × 108 particles/mL) and were inhibitory at the highest dose tested (2 × 1011 particles/mL). Conversely, extracellular protein fractions had no effect on myogenic differentiation. While the transfer of muscle-enriched miRNAs (myomiRs) has been proposed to mediate the pro-myogenic effects of EVs, we observed that they are scarce in EVs (e.g., 1 copy of miR-133a-3p per 195 EVs). Furthermore, we observed pro-myogenic effects with undifferentiated myoblast-derived EVs, in which myomiR concentrations are even lower, suggestive of a myomiR-independent mechanism underlying the observed pro-myogenic effects. During these investigations we identified technical factors with profound confounding effects on myogenic differentiation. Specifically, co-purification of insulin (a component of Opti-MEM) in non-EV LC fractions and polymer precipitated EV preparations. These findings provide further evidence that polymer-based precipitation techniques should be avoided in EV research.

19.
Methods Mol Biol ; 2383: 119-141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766286

RESUMEN

Extracellular vesicles are lipid-bilayer-enclosed nanoparticles present in the majority of biological fluids that mediate intercellular communication. EVs are able to transfer their contents (including nucleic acids, proteins, lipids, and small molecules) to recipient cells, and thus hold great promise as drug delivery vehicles. However, their therapeutic application is limited by lack of efficient cargo loading strategies, a need to improve EV tissue-targeting capabilities and a requirement to improve escape from the endolysosomal system. These challenges can be effectively addressed by modifying EVs with peptides which confer specific advantageous properties, thus enhancing their therapeutic potential. Here we provide an overview of the applications of peptide technology with respect to EV therapeutics. We focus on the utility of EV-modifying peptides for the purposes of promoting cargo loading, tissue-targeting and endosomal escape, leading to enhanced delivery of the EV cargo to desired cells/tissues and subcellular target locations. Both endogenous and exogenous methods for modifying EVs with peptides are considered.


Asunto(s)
Vesículas Extracelulares , Sistemas de Liberación de Medicamentos , Nanopartículas , Péptidos , Tecnología
20.
PLoS One ; 17(3): e0265948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358280

RESUMEN

MicroRNAs are well characterized in their role in silencing gene expression by targeting 3´-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Factor A de Crecimiento Endotelial Vascular , Animales , Hipoxia/genética , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA