Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 104(3): 373-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21855382

RESUMEN

Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.


Asunto(s)
Colágeno Tipo I/deficiencia , Colágeno Tipo I/metabolismo , Glomérulos Renales/patología , Metaloproteasas/metabolismo , Osteogénesis Imperfecta/metabolismo , Animales , Compuestos Azo , Colágeno Tipo I/genética , Cartilla de ADN/genética , Técnicas Histológicas , Inmunohistoquímica , Glomérulos Renales/crecimiento & desarrollo , Glomérulos Renales/metabolismo , Ratones , Ratones Mutantes , Osteogénesis Imperfecta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Int J Nephrol Renovasc Dis ; 10: 251-259, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919801

RESUMEN

The glomerulofibrotic Col1a2-deficient mouse model demonstrates glomerular homotrimeric type I collagen deposition in mesangial and subendothelial spaces. In this report, we investigate the role of transforming growth factor ß1 (TGF-ß1) in myofibroblast activation and epithelial-mesenchymal transition (EMT) in this glomerulopathy. Immunohistochemical analyses of glomerular α-sma, desmin, vimentin, and proliferating cell nuclear antigen demonstrated parietal epithelial cell proliferation and EMT in late stages of the glomerulopathy in the Col1a2-deficient mice. Glomerular TGF-ß1 RNA and protein were not elevated in 1- and 3-month-old mice as determined by quantitative reverse transcriptase-polymerase chain reaction and protein immunoassay analyses. To investigate further whether TGF-ß1 plays a role in the glomerulopathy outside of the 1- and 3-month time periods, the Col1a2-deficient mice were bred with Smad3 knockout mice. If the glomerular fibrosis in the Col1a2-deficient mice is mediated by the TGF-ß1/Smad3 transcription pathway, it was hypothesized that the resultant Col1a2-deficient/Smad3-deficient mice would exhibit attenuated glomerular homotrimer deposition. However, the Col1a2-deficient/Smad3-deficient kidneys were similarly affected as compared to age-matched Col1a2-deficient kidneys, suggesting that homotrimeric type I collagen deposition in the Col1a2-deficient mouse is independent of TGF-ß1/Smad3 signaling. Deposition of homotrimeric type I collagen appears to be the initiating event in this glomerulopathy, providing evidence that EMT and myofibroblast activation occur following initiation, consistent with a secondary wound-healing response independent of TGF-ß1.

3.
J Bone Miner Res ; 31(8): 1608-1616, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26925839

RESUMEN

Glycine (Gly) substitutions in collagen Gly-X-Y repeats disrupt folding of type I procollagen triple helix and cause severe bone fragility and malformations (osteogenesis imperfecta [OI]). However, these mutations do not elicit the expected endoplasmic reticulum (ER) stress response, in contrast to other protein-folding diseases. Thus, it has remained unclear whether cell stress and osteoblast malfunction contribute to the bone pathology caused by Gly substitutions. Here we used a mouse with a Gly610 to cysteine (Cys) substitution in the procollagen α2(I) chain to show that misfolded procollagen accumulation in the ER leads to an unusual form of cell stress, which is neither a conventional unfolded protein response (UPR) nor ER overload. Despite pronounced ER dilation, there is no upregulation of binding immunoglobulin protein (BIP) expected in the UPR and no activation of NF-κB signaling expected in the ER overload. Altered expression of ER chaperones αB crystalline and HSP47, phosphorylation of EIF2α, activation of autophagy, upregulation of general stress response protein CHOP, and osteoblast malfunction reveal some other adaptive response to the ER disruption. We show how this response alters differentiation and function of osteoblasts in culture and in vivo. We demonstrate that bone matrix deposition by cultured osteoblasts is rescued by activation of misfolded procollagen autophagy, suggesting a new therapeutic strategy for OI. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Colágeno Tipo I/genética , Mutación/genética , Osteoblastos/metabolismo , Osteogénesis Imperfecta/patología , Procolágeno/química , Procolágeno/metabolismo , Pliegue de Proteína , Estrés Fisiológico , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Matriz Extracelular/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/patología , Osteoblastos/ultraestructura , Osteogénesis Imperfecta/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA