Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474024

RESUMEN

Traumatic brain injury (TBI) is defined as an injury to the brain by external forces which can lead to cellular damage and the disruption of normal central nervous system functions. The recently approved blood-based biomarkers GFAP and UCH-L1 can only detect injuries which are detectable on CT, and are not sensitive enough to diagnose milder injuries or concussion. Exosomes are small microvesicles which are released from the cell as a part of extracellular communication in normal as well as diseased states. The objective of this study was to identify the messenger RNA content of the exosomes released by injured neurons to identify new potential blood-based biomarkers for TBI. Human severe traumatic brain injury samples were used for this study. RNA was isolated from neuronal exosomes and total transcriptomic sequencing was performed. RNA sequencing data from neuronal exosomes isolated from serum showed mRNA transcripts of several neuronal genes. In particular, mRNAs of several olfactory receptor genes were present at elevated concentrations in the neuronal exosomes. Some of these genes were OR10A6, OR14A2, OR6F1, OR1B1, and OR1L1. RNA sequencing data from exosomes isolated from CSF showed a similar elevation of these olfactory receptors. We further validated the expression of these samples in serum samples of mild TBI patients, and a similar up-regulation of these olfactory receptors was observed. The data from these experiments suggest that damage to the neurons in the olfactory neuroepithelium as well as in the brain following a TBI may cause the release of mRNA from these receptors in the exosomes. Hence, olfactory receptors can be further explored as biomarkers for the diagnosis of TBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Vesículas Extracelulares , Neuronas Receptoras Olfatorias , Receptores Odorantes , Humanos , Lesiones Traumáticas del Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , ARN , Biomarcadores , ARN Mensajero , Perfilación de la Expresión Génica
2.
Neurocrit Care ; 37(1): 172-183, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35229233

RESUMEN

BACKGROUND: Severe traumatic brain injury (TBI) is a major contributor to disability and mortality in the industrialized world. Outcomes of severe TBI are profoundly heterogeneous, complicating outcome prognostication. Several prognostic models have been validated for acute prediction of 6-month global outcomes following TBI (e.g., morbidity/mortality). In this preliminary observational prognostic study, we assess the utility of the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) Lab model in predicting longer term global and cognitive outcomes (7-10 years post injury) and the extent to which cerebrospinal fluid (CSF) biomarkers enhance outcome prediction. METHODS: Very long-term global outcome was assessed in a total of 59 participants (41 of whom did not survive their injuries) using the Glasgow Outcome Scale-Extended and Disability Rating Scale. More detailed outcome information regarding cognitive functioning in daily life was collected from 18 participants surviving to 7-10 years post injury using the Cognitive Subscale of the Functional Independence Measure. A subset (n = 10) of these participants also completed performance-based cognitive testing (Digit Span Test) by telephone. The IMPACT lab model was applied to determine its prognostic value in relation to very long-term outcomes as well as the additive effects of acute CSF ubiquitin C-terminal hydrolase-L1 (UCH-L1) and microtubule associated protein 2 (MAP-2) concentrations. RESULTS: The IMPACT lab model discriminated favorable versus unfavorable 7- to 10-year outcome with an area under the receiver operating characteristic curve of 0.80. Higher IMPACT lab model risk scores predicted greater extent of very long-term morbidity (ß = 0.488 p = 0.000) as well as reduced cognitive independence (ß = - 0.515, p = 0.034). Acute elevations in UCH-L1 levels were also predictive of lesser independence in cognitive activities in daily life at very long-term follow-up (ß = 0.286, p = 0.048). Addition of two CSF biomarkers significantly improved prediction of very long-term neuropsychological performance among survivors, with the overall model (including IMPACT lab score, UCH-L1, and MAP-2) explaining 89.6% of variance in cognitive performance 7-10 years post injury (p = 0.008). Higher acute UCH-L1 concentrations were predictive of poorer cognitive performance (ß = - 0.496, p = 0.029), whereas higher acute MAP-2 concentrations demonstrated a strong cognitive protective effect (ß = 0.679, p = 0.010). CONCLUSIONS: Although preliminary, results suggest that existing prognostic models, including models with incorporation of CSF markers, may be applied to predict outcome of severe TBI years after injury. Continued research is needed examining early predictors of longer-term outcomes following TBI to identify potential targets for clinical trials that could impact long-ranging functional and cognitive outcomes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Biomarcadores/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/fisiopatología , Escala de Coma de Glasgow , Humanos , Proteínas Asociadas a Microtúbulos/líquido cefalorraquídeo , Pronóstico , Ubiquitina Tiolesterasa/líquido cefalorraquídeo
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012232

RESUMEN

Glial fibrillary acidic protein (GFAP) is the major intermediate filament III protein of astroglia cells which is upregulated in traumatic brain injury (TBI). Here we reported that GFAP is truncated at both the C- and N-terminals by cytosolic protease calpain to GFAP breakdown products (GBDP) of 46-40K then 38K following pro-necrotic (A23187) and pro-apoptotic (staurosporine) challenges to primary cultured astroglia or neuron-glia mixed cells. In addition, with another pro-apoptotic challenge (EDTA) where caspases are activated but not calpain, GFAP was fragmented internally, generating a C-terminal GBDP of 20 kDa. Following controlled cortical impact in mice, GBDP of 46-40K and 38K were formed from day 3 to 28 post-injury. Purified GFAP protein treated with calpain-1 and -2 generates (i) major N-terminal cleavage sites at A-56*A-61 and (ii) major C-terminal cleavage sites at T-383*Q-388, producing a limit fragment of 38K. Caspase-6 treated GFAP was cleaved at D-78/R-79 and D-225/A-226, where GFAP was relatively resistant to caspase-3. We also derived a GBDP-38K N-terminal-specific antibody which only labels injured astroglia cell body in both cultured astroglia and mouse cortex and hippocampus after TBI. As a clinical translation, we observed that CSF samples collected from severe human TBI have elevated levels of GBDP-38K as well as two C-terminally released GFAP peptides (DGEVIKES and DGEVIKE). Thus, in addition to intact GFAP, both the GBDP-38K as well as unique GFAP released C-terminal proteolytic peptides species might have the potential in tracking brain injury progression.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Astrocitos/metabolismo , Biomarcadores , Calpaína/metabolismo , Caspasa 6 , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Ratones , Péptido Hidrolasas , Péptidos
4.
Neurosurg Focus ; 43(5): E2, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29088954

RESUMEN

OBJECTIVE Hypernatremia is independently associated with increased mortality in critically ill patients. Few studies have evaluated the impact of hypernatremia on early mortality in patients with severe traumatic brain injury (TBI) treated in a neurocritical care unit. METHODS A retrospective review of patients with severe TBI (admission Glasgow Coma Scale score ≤ 8) treated in a single neurocritical care unit between 1986 and 2012 was performed. Patients with at least 3 serum sodium values were selected for the study. Patients with diabetes insipidus and those with hypernatremia on admission were excluded. The highest serum sodium level during the hospital stay was recorded, and hypernatremia was classified as none (≤ 150 mEq/L), mild (151-155 mEq/L), moderate (156-160 mEq/L), and severe (> 160 mEq/L). Multivariate Cox regression analysis was performed to determine independent predictors of early mortality. RESULTS A total of 588 patients with severe TBI were studied. The median number of serum sodium measurements for patients in this study was 17 (range 3-190). No hypernatremia was seen in 371 patients (63.1%), mild hypernatremia in 77 patients (13.1%), moderate hypernatremia in 50 patients (8.5%), and severe hypernatremia in 90 patients (15.3%). Hypernatremia was detected within the 1st week of admission in 79.3% of patients (n = 172), with the majority of patients (46%) being diagnosed within 72 hours after admission. Acute kidney injury, defined as a rise in creatinine of ≥ 0.3 mg/dl, was observed in 162 patients (27.6%) and was significantly associated with the degree of hypernatremia (p < 0.001). At discharge, 148 patients (25.2%) had died. Hypernatremia was a significant independent predictor of mortality (hazard ratios for mild: 3.4, moderate: 4.4, and severe: 8.4; p < 0.001). Survival analysis showed significantly lower survival rates for patients with greater degrees of hypernatremia (log-rank test, p < 0.001). CONCLUSIONS Hypernatremia after admission in patients with severe TBI was independently associated with greater risk of early mortality. In addition to severe hypernatremia, mild and moderate hypernatremia were significantly associated with increased early mortality in patients with severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/mortalidad , Hipernatremia/mortalidad , Morbilidad , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atención al Paciente/estadística & datos numéricos , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Análisis de Supervivencia , Tasa de Supervivencia
5.
Crit Care Med ; 44(9): 1754-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27315192

RESUMEN

OBJECTIVES: To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. DESIGN: A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. SETTING: The neurosurgical unit of Ben Taub Hospital (Houston, TX). SUBJECTS: Our cohort consisted of 817 subjects with severe traumatic brain injury. MEASUREMENTS AND MAIN RESULTS: Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. CONCLUSIONS: Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Hipoxia Encefálica/etiología , Hipertensión Intracraneal/etiología , Adulto , Algoritmos , Femenino , Humanos , Hipoxia Encefálica/diagnóstico , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal/fisiología , Masculino , Persona de Mediana Edad , Monitorización Neurofisiológica , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
6.
Curr Neurol Neurosci Rep ; 16(9): 78, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27443645

RESUMEN

Mild to moderate therapeutic hypothermia (HT) has been used to alleviate intracranial hypertension in traumatic brain injury (TBI). Its main contribution is thought to be via reduction in cerebral metabolic requirement leading both to favorable oxygen/metabolic delivery-demand ratios as well as a reduction of cerebral blood volume resulting in decreased ICP. Nevertheless, HT is a clinically complex, labor-intensive procedure with numerous potential adverse effects. Furthermore, randomized controlled trials suggest either no effect or harm. These facts challenge the role of HT in TBI. We address this challenge by posing three questions that relate to the overarching value of controlling ICP, the effectiveness of HT in reducing ICP, and the benefit-risk ratio of the intervention. We conclude that HT should not be used as an "early" intervention unless as a part of a clinical trial, although it may still have a role in patients with refractory intracranial hypertension.


Asunto(s)
Hipotermia Inducida , Hipertensión Intracraneal/terapia , Presión Intracraneal , Animales , Lesiones Encefálicas/fisiopatología , Humanos , Hipertensión Intracraneal/fisiopatología , Monitorización Neurofisiológica
7.
Crit Care ; 20: 288, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27630085

RESUMEN

BACKGROUND: Patients with severe traumatic brain injury (TBI) are at risk of the development of acute respiratory distress syndrome (ARDS). TBI and ARDS pathophysiologic mechanisms are known to independently involve significant inflammatory responses. The literature on the association between plasma inflammatory cytokines and ARDS in patients with TBI is sparse. METHODS: The study was a secondary analysis of the safety of a randomized trial of erythropoietin and transfusion threshold in patients with severe TBI. Inflammatory markers within the first 24 hours after injury were compared in patients who developed ARDS and patients without ARDS, using Cox proportional hazards models. RESULTS: There were 200 patients enrolled in the study. The majority of plasma and cerebrospinal fluid (CSF) cytokine levels were obtained within 6 hours. Plasma proinflammatory markers IL-6 and IL-8 and anti-inflammatory marker IL-10 were associated with the development of ARDS (adjusted hazard ratio (HR) = 1.55, confidence interval (CI) = 1.14, 2.11, P = 0.005 for IL-6; adjusted HR = 1.32, CI = 1.10, 1.59, P = 0.003 for IL-8). CONCLUSION: Plasma markers of IL-6, IL-8, and IL-10 are associated with ARDS in patients with severe TBI. TRIAL REGISTRATION: NCT00313716 registered 4/2006.


Asunto(s)
Biomarcadores/análisis , Lesiones Traumáticas del Encéfalo/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , Adolescente , Adulto , Biomarcadores/sangre , Femenino , Humanos , Interleucina-10/análisis , Interleucina-10/sangre , Interleucina-6/análisis , Interleucina-6/sangre , Interleucina-8/análisis , Interleucina-8/sangre , Masculino , Persona de Mediana Edad , Análisis Multivariante , Modelos de Riesgos Proporcionales
8.
Neurocrit Care ; 22(3): 369-77, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25832350

RESUMEN

Multi-modal monitoring has become an integral part of neurointensive care. However, our approach is at this time neither standardized nor backed by data from randomized controlled trials. The goal of the second Neurocritical Care Research Conference was to discuss research priorities in multi-modal monitoring, what research tools are available, as well as the latest advances in clinical trial design. This section of the meeting was focused on how such a trial should be designed so as to maximize yield and avoid mistakes of the past.


Asunto(s)
Cuidados Críticos/métodos , Monitorización Neurofisiológica/métodos , Proyectos de Investigación , Ensayos Clínicos como Asunto , Humanos
9.
Neurocrit Care ; 22(1): 52-64, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25052159

RESUMEN

OBJECTIVE: This study assessed whether early levels of biomarkers measured in CSF within 24-h of severe TBI would improve the clinical prediction of 6-months mortality. METHODS: This prospective study conducted at two Level 1 Trauma Centers enrolled adults with severe TBI (GCS ≤8) requiring a ventriculostomy as well as control subjects. Ventricular CSF was sampled within 24-h of injury and analyzed for seven candidate biomarkers (UCH-L1, MAP-2, SBDP150, SBDP145, SBDP120, MBP, and S100B). The International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) scores (Core, Extended, and Lab) were calculated for each patient to determine risk of 6-months mortality. The IMPACT models and biomarkers were assessed alone and in combination. RESULTS: There were 152 patients enrolled, 131 TBI patients and 21 control patients. Thirty six (27 %) patients did not survive to 6 months. Biomarkers were all significantly elevated in TBI versus controls (p < 0.001). Peak levels of UCH-L1, SBDP145, MAP-2, and MBP were significantly higher in non-survivors (p < 0.05). Of the seven biomarkers measured at 12-h post-injury MAP-2 (p = 0.004), UCH-L1 (p = 0.024), and MBP (p = 0.037) had significant unadjusted hazard ratios. Of the seven biomarkers measured at the earliest time within 24-h, MAP-2 (p = 0.002), UCH-L1 (p = 0.016), MBP (p = 0.021), and SBDP145 (0.029) had the most significant elevations. When the IMPACT Extended Model was combined with the biomarkers, MAP-2 contributed most significantly to the survival models with sensitivities of 97-100 %. CONCLUSIONS: These data suggest that early levels of MAP-2 in combination with clinical data provide enhanced prognostic capabilities for mortality at 6 months.


Asunto(s)
Lesiones Encefálicas/líquido cefalorraquídeo , Lesiones Encefálicas/mortalidad , Proteínas Asociadas a Microtúbulos/líquido cefalorraquídeo , Modelos Estadísticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/líquido cefalorraquídeo , Femenino , Escala de Coma de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Índice de Severidad de la Enfermedad , Adulto Joven
10.
Clin Trials ; 11(2): 187-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24686108

RESUMEN

BACKGROUND: The Final Rule regulations were developed to allow exception from informed consent (EFIC) to enable clinical trial research in emergency settings where major barriers exist for informed consent. There is little known evidence of the effect of the Final Rule in minority enrollment in clinical trials, particularly in traumatic brain injury (TBI) trials. A clinical trial funded by the National Institute of Neurological Disorders and Stroke was conducted to study the effects of erythropoietin on cerebral vascular dysfunction and anemia in subjects with TBI. There were periods of time when EFIC was and was not available for enrollment into the study. PURPOSE: To explore the effect of EFIC availability on TBI trial enrollment of minority versus non-minority subjects. METHODS: Minority status of screened (n = 289) and enrolled (n = 191) TBI subjects was determined for this study. We tested for the presence of a minority and EFIC availability interaction in a multiple logistic regression model after controlling for EFIC and minority group main effects and other covariates. RESULTS: An interaction between the availability of EFIC minority and non-minority enrollment was not detected (odds ratio = 1.22; 95% confidence interval (CI) = 0.29-5.16). LIMITATIONS: Our study was conducted at a single site, and the CI for the EFIC and minority interaction term was wide. Therefore, a small interaction effect cannot be ruled out. CONCLUSION: EFIC increased the odds of being enrolled regardless of minority status.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Diversidad Cultural , Etnicidad/estadística & datos numéricos , Consentimiento Informado , Grupos Minoritarios/estadística & datos numéricos , Selección de Paciente , Adulto , Negro o Afroamericano/estadística & datos numéricos , Anemia/complicaciones , Anemia/tratamiento farmacológico , Asiático/estadística & datos numéricos , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Femenino , Hematínicos/uso terapéutico , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Estados Unidos , Población Blanca/estadística & datos numéricos
11.
Neurocrit Care ; 21 Suppl 2: S187-214, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25208676

RESUMEN

BACKGROUND: Molecular biomarkers have revolutionalized diagnosis and treatment of many diseases, such as troponin use in myocardial infarction. Urgent need for high-fidelity biomarkers in neurocritical care has resulted in numerous studies reporting potential candidate biomarkers. METHODS: We performed an electronic literature search and systematic review of English language articles on cellular/molecular biomarkers associated with outcome and with disease-specific secondary complications in adult patients with acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), and post-cardiac arrest hypoxic ischemic encephalopathic injuries (HIE). RESULTS: A total of 135 articles were included. Though a wide variety of potential biomarkers have been identified, only neuron-specific enolase has been validated in large cohorts and shows 100% specificity for poor outcome prediction in HIE patients not treated with therapeutic hypothermia. There are many promising candidate blood and CSF biomarkers in SAH, AIS, ICH, and TBI, but none yet meets criteria for routine clinical use. CONCLUSION: Current studies vary significantly in patient selection, biosample collection/processing, and biomarker measurement protocols, thereby limiting the generalizability of overall results. Future large prospective studies with standardized treatment, biosample collection, and biomarker measurement and validation protocols are necessary to identify high-fidelity biomarkers in neurocritical care.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Hipoxia-Isquemia Encefálica/patología , Accidente Cerebrovascular/patología , Hemorragia Subaracnoidea/patología , Biomarcadores/metabolismo , Lesiones Encefálicas/etiología , Muerte Celular , Cuidados Críticos , Paro Cardíaco/complicaciones , Humanos , Hipoxia-Isquemia Encefálica/etiología , Hipoxia-Isquemia Encefálica/metabolismo , Reproducibilidad de los Resultados , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo
12.
JAMA ; 312(1): 36-47, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-25058216

RESUMEN

IMPORTANCE: There is limited information about the effect of erythropoietin or a high hemoglobin transfusion threshold after a traumatic brain injury. OBJECTIVE: To compare the effects of erythropoietin and 2 hemoglobin transfusion thresholds (7 and 10 g/dL) on neurological recovery after traumatic brain injury. DESIGN, SETTING, AND PARTICIPANTS: Randomized clinical trial of 200 patients (erythropoietin, n = 102; placebo, n = 98) with closed head injury who were unable to follow commands and were enrolled within 6 hours of injury at neurosurgical intensive care units in 2 US level I trauma centers between May 2006 and August 2012. The study used a factorial design to test whether erythropoietin would fail to improve favorable outcomes by 20% and whether a hemoglobin transfusion threshold of greater than 10 g/dL would increase favorable outcomes without increasing complications. Erythropoietin or placebo was initially dosed daily for 3 days and then weekly for 2 more weeks (n = 74) and then the 24- and 48-hour doses were stopped for the remainder of the patients (n = 126). There were 99 patients assigned to a hemoglobin transfusion threshold of 7 g/dL and 101 patients assigned to 10 g/dL. INTERVENTIONS: Intravenous erythropoietin (500 IU/kg per dose) or saline. Transfusion threshold maintained with packed red blood cells. MAIN OUTCOMES AND MEASURES: Glasgow Outcome Scale score dichotomized as favorable (good recovery and moderate disability) or unfavorable (severe disability, vegetative, or dead) at 6 months postinjury. RESULTS: There was no interaction between erythropoietin and hemoglobin transfusion threshold. Compared with placebo (favorable outcome rate: 34/89 [38.2%; 95% CI, 28.1% to 49.1%]), both erythropoietin groups were futile (first dosing regimen: 17/35 [48.6%; 95% CI, 31.4% to 66.0%], P = .13; second dosing regimen: 17/57 [29.8%; 95% CI, 18.4% to 43.4%], P < .001). Favorable outcome rates were 37/87 (42.5%) for the hemoglobin transfusion threshold of 7 g/dL and 31/94 (33.0%) for 10 g/dL (95% CI for the difference, -0.06 to 0.25, P = .28). There was a higher incidence of thromboembolic events for the transfusion threshold of 10 g/dL (22/101 [21.8%] vs 8/99 [8.1%] for the threshold of 7 g/dL, odds ratio, 0.32 [95% CI, 0.12 to 0.79], P = .009). CONCLUSIONS AND RELEVANCE: In patients with closed head injury, neither the administration of erythropoietin nor maintaining hemoglobin concentration of greater than 10 g/dL resulted in improved neurological outcome at 6 months. The transfusion threshold of 10 g/dL was associated with a higher incidence of adverse events. These findings do not support either approach in this setting. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00313716.


Asunto(s)
Anemia/terapia , Lesiones Encefálicas/complicaciones , Transfusión de Eritrocitos/efectos adversos , Eritropoyetina/administración & dosificación , Hemoglobinas/análisis , Adulto , Anemia/complicaciones , Anemia/etiología , Lesiones Encefálicas/terapia , Transfusión de Eritrocitos/métodos , Femenino , Escala de Consecuencias de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Examen Neurológico , Estado Vegetativo Persistente , Valores de Referencia , Índice de Severidad de la Enfermedad , Tromboembolia/inducido químicamente , Resultado del Tratamiento , Adulto Joven
13.
J Neurotrauma ; 41(1-2): 73-90, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489296

RESUMEN

In patients with traumatic brain injury (TBI), serum biomarkers may have utility in assessing the evolution of secondary brain injury. A panel of nine brain-injury- associated biomarkers was measured in archived serum samples over 10 days post-injury from 100 patients with moderate-severe TBI. Among the biomarkers evaluated, serum glial fibrillary acidic protein (GFAP) had the strongest associations with summary measures of acute pathophysiology, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue pO2 (PbtO2). Group based trajectory (TRAJ) analysis was used to identify three distinct GFAP subgroups. The low TRAJ group (n = 23) had peak levels of 9.4 + 1.2 ng/mL that declined rapidly. The middle TRAJ group (n = 48) had higher peak values (31.5 + 5.0 ng/mL) and a slower decline over time. The high TRAJ group (n = 26) had very high, sustained peak values (59.6 + 12.5 ng/mL) that even rose among some patients over 10 days. Patients in the high TRAJ group had significantly higher mortality rate than patients in low and middle TRAJ groups (26.9% vs. 7.0%, p = 0.028). The frequency of poor neurological outcome (Glasgow Outcome Score Extended [GOS-E] 1-4) was 88.5% in the high TRAJ group, 54.2% in the middle TRAJ group, and 30.4% in the low TRAJ group (p < 0.001). ICP was highest in the high TRAJ group (median 17.6 mm Hg), compared with 14.4 mmHg in the low and 15.9 mm Hg in middle TRAJ groups (p = 0.002). High TRAJ patients spent the longest time with ICP >25 mm Hg, median 23 h, compared with 2 and 6 h in the low and middle TRAJ groups (p = 0.006), and the longest time with ICP >30 mm Hg, median 5 h, compared with 0 and 1 h in the low and middle TRAJ groups, respectively (p = 0.013). High TRAJ group patients more commonly required tier 2 or 3 treatment to control ICP. The high TRAJ group had the longest duration when CPP was <50 mm Hg (p = 0.007), and PbtO2 was <10 mm Hg (p = 0.002). Logistical regression was used to study the relationship between temporal serum GFAP patterns and 6-month GOS-E. Here, the low and middle TRAJ groups were combined to form a low-risk group, and the high TRAJ group was designated the high-risk group. High TRAJ group patients had a greater chance of a poor 6-month GOS-E (p < 0.0001). When adjusting for baseline injury characteristics, GFAP TRAJ group membership remained associated with GOS-E (p = 0.003). When an intensive care unit (ICU) injury burden score, developed to quantify physiological derangements, was added to the model, GFAP TRAJ group membership remained associated with GOS-E (p = 0.014). Mediation analysis suggested that ICU burden scores were in the causal pathway between TRAJ group and 6-month mortality or GOS-E. Our results suggest that GFAP may be useful to monitor serially in moderate-severe TBI patients. Future studies in larger cohorts are needed to confirm these results.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Presión Intracraneal/fisiología
14.
Adv Mater ; 36(10): e2211239, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36940058

RESUMEN

Carbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process-structure-property-performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.


Asunto(s)
Antioxidantes , Lesiones Traumáticas del Encéfalo , Clorambucilo/análogos & derivados , Ácidos Oléicos , Ratas , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Carbón Orgánico/farmacología , Carbono/química , Superóxido Dismutasa/química , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
15.
J Neurotrauma ; 41(13-14): 1609-1627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588256

RESUMEN

Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). In this multi-cohort study, we measured serum and CSF NF-L and pNF-H levels in samples collected from two clinical cohorts (University of Pittsburgh [UPITT] and Baylor College of Medicine [BCM]) of individuals with moderate-severe TBI. The UPITT cohort includes 279 subjects from an observational cohort study; we obtained serum (n = 277 unique subjects) and CSF (n = 95 unique subjects) daily for 1 week, and serum every 2 weeks for 6 months. The BCM cohort included 103 subjects from a previous randomized clinical trial of erythropoietin and blood transfusion threshold after severe TBI, which showed no effect on neurological outcome between treatment arms; serum (n = 99 unique subjects) and CSF (n = 54 unique subjects) NF-L and pNF-H levels were measured at least daily during Days (D) 0-10 post-injury. GOS-E and DRS were assessed at 6 months (both cohorts) and 12 months (UPITT cohort only). Results show serum NF-L and pNF-H gradually rise during the first 10 days and peak at D20-30 post-injury. In the UPITT cohort, acute (D0-6) NF-L and pNF-H levels correlate within CSF and serum (Spearman r = 0.44-0.48; p < 0.05). In the UPITT cohort, acute NF-L CSF and serum levels, as well as chronic (Months [M]2-6) serum NF-L levels, were higher among individuals with unfavorable GOS-E and worse DRS at 12 months (p < 0.05, all comparisons). In the BCM cohort, higher acute serum NF-L levels were also associated with unfavorable GOS-E. Higher pNF-H serum concentrations (D0-6 and M2-6), but not CSF pNF-H, were associated with unfavorable GOS-E and worse DRS (p < 0.05, all comparisons) in the UPITT cohort. Relationships between biomarker levels and favorable outcome persisted after controlling for age, sex, and Glasgow Coma Scale. This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.


Asunto(s)
Biomarcadores , Lesiones Traumáticas del Encéfalo , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Masculino , Femenino , Adulto , Lesiones Traumáticas del Encéfalo/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/diagnóstico , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Persona de Mediana Edad , Estudios de Cohortes , Fosforilación , Adulto Joven , Escala de Consecuencias de Glasgow , Anciano , Lesión Axonal Difusa/líquido cefalorraquídeo , Lesión Axonal Difusa/sangre
16.
JAMA Surg ; 159(3): 248-259, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091011

RESUMEN

Importance: Traumatic brain injury (TBI) is associated with persistent functional and cognitive deficits, which may be susceptible to secondary insults. The implications of exposure to surgery and anesthesia after TBI warrant investigation, given that surgery has been associated with neurocognitive disorders. Objective: To examine whether exposure to extracranial (EC) surgery and anesthesia is related to worse functional and cognitive outcomes after TBI. Design, Setting, and Participants: This study was a retrospective, secondary analysis of data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, a prospective cohort study that assessed longitudinal outcomes of participants enrolled at 18 level I US trauma centers between February 1, 2014, and August 31, 2018. Participants were 17 years or older, presented within 24 hours of trauma, were admitted to an inpatient unit from the emergency department, had known Glasgow Coma Scale (GCS) and head computed tomography (CT) status, and did not undergo cranial surgery. This analysis was conducted between January 2, 2020, and August 8, 2023. Exposure: Participants who underwent EC surgery during the index admission were compared with participants with no surgery in groups with a peripheral orthopedic injury or a TBI and were classified as having uncomplicated mild TBI (GCS score of 13-15 and negative CT results [CT- mTBI]), complicated mild TBI (GCS score of 13-15 and positive CT results [CT+ mTBI]), or moderate to severe TBI (GCS score of 3-12 [m/sTBI]). Main Outcomes and Measures: The primary outcomes were functional limitations quantified by the Glasgow Outcome Scale-Extended for all injuries (GOSE-ALL) and brain injury (GOSE-TBI) and neurocognitive outcomes at 2 weeks and 6 months after injury. Results: A total of 1835 participants (mean [SD] age, 42.2 [17.8] years; 1279 [70%] male; 299 Black, 1412 White, and 96 other) were analyzed, including 1349 nonsurgical participants and 486 participants undergoing EC surgery. The participants undergoing EC surgery across all TBI severities had significantly worse GOSE-ALL scores at 2 weeks and 6 months compared with their nonsurgical counterparts. At 6 months after injury, m/sTBI and CT+ mTBI participants who underwent EC surgery had significantly worse GOSE-TBI scores (B = -1.11 [95% CI, -1.53 to -0.68] in participants with m/sTBI and -0.39 [95% CI, -0.77 to -0.01] in participants with CT+ mTBI) and performed worse on the Trail Making Test Part B (B = 30.1 [95% CI, 11.9-48.2] in participants with m/sTBI and 26.3 [95% CI, 11.3-41.2] in participants with CT+ mTBI). Conclusions and Relevance: This study found that exposure to EC surgery and anesthesia was associated with adverse functional outcomes and impaired executive function after TBI. This unfavorable association warrants further investigation of the potential mechanisms and clinical implications that could inform decisions regarding the timing of surgical interventions in patients after TBI.


Asunto(s)
Anestesia , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Masculino , Adulto , Femenino , Estudios Prospectivos , Estudios Retrospectivos
17.
J Neurotrauma ; 41(11-12): 1310-1322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450561

RESUMEN

Isolated traumatic subarachnoid hemorrhage (tSAH) after traumatic brain injury (TBI) on head computed tomography (CT) scan is often regarded as a "mild" injury, with reduced need for additional workup. However, tSAH is also a predictor of incomplete recovery and unfavorable outcome. This study aimed to evaluate the characteristics of CT-occult intracranial injuries on brain magnetic resonance imaging (MRI) scan in TBI patients with emergency department (ED) arrival Glasgow Coma Scale (GCS) score 13-15 and isolated tSAH on CT. The prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (TRACK-TBI; enrollment years 2014-2019) enrolled participants who presented to the ED and received a clinically-indicated head CT within 24 h of TBI. A subset of TRACK-TBI participants underwent venipuncture within 24 h for plasma glial fibrillary acidic protein (GFAP) analysis, and research MRI at 2-weeks post-injury. In the current study, TRACK-TBI participants age ≥17 years with ED arrival GCS 13-15, isolated tSAH on initial head CT, plasma GFAP level, and 2-week MRI data were analyzed. In 57 participants, median age was 46.0 years [quartile 1 to 3 (Q1-Q3): 34-57] and 52.6% were male. At ED disposition, 12.3% were discharged home, 61.4% were admitted to hospital ward, and 26.3% to intensive care unit. MRI identified CT-occult traumatic intracranial lesions in 45.6% (26 of 57 participants; one additional lesion type: 31.6%; 2 additional lesion types: 14.0%); of these 26 participants with CT-occult intracranial lesions, 65.4% had axonal injury, 42.3% had subdural hematoma, and 23.1% had intracerebral contusion. GFAP levels were higher in participants with CT-occult MRI lesions compared with without (median: 630.6 pg/mL, Q1-Q3: [172.4-941.2] vs. 226.4 [105.8-436.1], p = 0.049), and were associated with axonal injury (no: median 226.7 pg/mL [109.6-435.1], yes: 828.6 pg/mL [204.0-1194.3], p = 0.009). Our results indicate that isolated tSAH on head CT is often not the sole intracranial traumatic injury in GCS 13-15 TBI. Forty-six percent of patients in our cohort (26 of 57 participants) had additional CT-occult traumatic lesions on MRI. Plasma GFAP may be an important biomarker for the identification of additional CT-occult injuries, including axonal injury. These findings should be interpreted cautiously given our small sample size and await validation from larger studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Hemorragia Subaracnoidea Traumática , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Subaracnoidea Traumática/diagnóstico por imagen , Adulto , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anciano , Escala de Coma de Glasgow
18.
Trauma Surg Acute Care Open ; 9(1): e001501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081460

RESUMEN

Objectives: An estimated 14-23% of patients with traumatic brain injury (TBI) incur multiple lifetime TBIs. The relationship between prior TBI and outcomes in patients with moderate to severe TBI (msTBI) is not well delineated. We examined the associations between prior TBI, in-hospital mortality, and outcomes up to 12 months after injury in a prospective US msTBI cohort. Methods: Data from hospitalized subjects with Glasgow Coma Scale score of 3-12 were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (enrollment period: 2014-2019). Prior TBI with amnesia or alteration of consciousness was assessed using the Ohio State University TBI Identification Method. Competing risk regressions adjusting for age, sex, psychiatric history, cranial injury and extracranial injury severity examined the associations between prior TBI and in-hospital mortality, with hospital discharged alive as the competing risk. Adjusted HRs (aHR (95% CI)) were reported. Multivariable logistic regressions assessed the associations between prior TBI, mortality, and unfavorable outcome (Glasgow Outcome Scale-Extended score 1-3 (vs. 4-8)) at 3, 6, and 12 months after injury. Results: Of 405 acute msTBI subjects, 21.5% had prior TBI, which was associated with male sex (87.4% vs. 77.0%, p=0.037) and psychiatric history (34.5% vs. 20.7%, p=0.010). In-hospital mortality was 10.1% (prior TBI: 17.2%, no prior TBI: 8.2%, p=0.025). Competing risk regressions indicated that prior TBI was associated with likelihood of in-hospital mortality (aHR=2.06 (1.01-4.22)), but not with hospital discharged alive. Prior TBI was not associated with mortality or unfavorable outcomes at 3, 6, and 12 months. Conclusions: After acute msTBI, prior TBI history is independently associated with in-hospital mortality but not with mortality or unfavorable outcomes within 12 months after injury. This selective association underscores the importance of collecting standardized prior TBI history data early after acute hospitalization to inform risk stratification. Prospective validation studies are needed. Level of evidence: IV. Trial registration number: NCT02119182.

19.
J Biol Chem ; 287(4): 2437-45, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22144675

RESUMEN

APP processing and amyloid-ß production play a central role in Alzheimer disease pathogenesis. APP has been considered a ubiquitously expressed protein. In addition to amyloid-ß, α- or ß-secretase-dependent cleavage of APP also generates soluble secreted APP (APPsα or APPsß, respectively). Interestingly, APPsß has been shown to be subject to further cleavage to create an N-APP fragment that binds to the DR6 death receptor and mediates axon pruning and degeneration under trophic factor withdrawal conditions. By performing APP immunocytochemical staining, we found that, unexpectedly, many antibodies yielded nonspecific staining in APP-null samples. Screening of a series of antibodies allowed us to identify a rabbit monoclonal antibody Y188 that is highly specific for APP and prompted us to re-examine the expression, localization, and stability of endogenous APP and APPsß in wild-type and in APPsß knock-in mice, respectively. In contrast to earlier studies, we found that APP is specifically expressed in neurons and that its expression cannot be detected in major types of glial cells under basal or neuroinflammatory conditions. Both APPsα and APPsß are highly stable in the central nervous system (CNS) and do not undergo further cleavage with or without trophic factor support. Our results clarify several key questions with regard to the fundamental properties of APP and offer critical cellular insights into the pathophysiology of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/biosíntesis , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Anticuerpos Monoclonales/farmacología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Ratones , Ratones Noqueados , Neuronas/patología , Especificidad de Órganos , Estabilidad Proteica , Conejos , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA