Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Am Chem Soc ; 146(33): 22923-22929, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106062

RESUMEN

Cationic Ir(I)-complexes modified with homochiral diphosphines promote the hydroalkenylative cross-coupling of ß-(arylamino)acrylates with monosubstituted styrenes and α-olefins. The processes are dependent on the presence of an NH unit, and it is postulated that metalation of this generates an iridium aza-enolate that engages the alkene during the C-C bond forming event. The method offers high branched selectivity and enantioselectivity and occurs with complete atom economy. Diastereocontrolled reduction of the products provides ß2-amino acids that possess contiguous stereocenters.

2.
Small ; 20(25): e2308865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221684

RESUMEN

Mechanosensitive molecular junctions, where conductance is sensitive to an applied stress such as force or displacement, are a class of nanoelectromechanical systems unique for their ability to exploit quantum mechanical phenomena. Most studies so far relied on reconfiguration of the molecule-electrode interface to impart mechanosensitivity, but this approach is limited and, generally, poorly reproducible. Alternatively, devices that exploit conformational flexibility of molecular wires have been recently proposed. The mechanosensitive properties of molecular wires containing the 1,1'-dinaphthyl moiety are presented here. Rotation along the chemical bond between the two naphthyl units is possible, giving rise to two conformers (transoid and cisoid) that have distinctive transport properties. When assembled as single-molecule junctions, it is possible to mechanically trigger the transoid to cisoid transition, resulting in an exquisitely sensitive mechanical switch with high switching ratio (> 102). Theoretical modeling shows that charge reconfiguration upon transoid to cisoid transition is responsible for the observed behavior, with generation and subsequent lifting of quantum interference features. These findings expand the experimental toolbox of molecular electronics with a novel chemical structure with outstanding electromechanical properties, further demonstrating the importance of subtle changes in charge delocalization on the transport properties of single-molecule devices.

3.
Org Biomol Chem ; 22(5): 1023-1026, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38189557

RESUMEN

The air-stable complex Ni(COD)(DQ) (COD = 1,5-cyclooctadiene, DQ = duroquinone) promotes the coupling of aryl halides to arenes in the presence of KOtBu. This complex has recently been shown to perform coupling reactions based on organonickel intermediates, but in this case the coupling reactions proceed via aryl radicals as shown by our newly developed assay for aryl radicals. Coupling with this nickel source is more efficient than with Ni(COD)2, Ni(PPh3)4 and Ni(acac)2, all of which we also show to operate through aryl radical pathways.

4.
Org Biomol Chem ; 22(5): 1018-1022, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197449

RESUMEN

Aryl radicals are intermediates in many reactions, but determining their presence unambiguously is often challenging. As we recently reported, reaction of 2-iodo-1,3-dimethylbenzene (7) in benzene with KOtBu and a suitable organic additive, leads to a base-induced homolytic aromatic substitution (BHAS) coupling reaction giving 2,6-dimethylbiphenyl (12) and biphenyl (3) as coupled products, together with xylene (13). In this case, biphenyl arises from a radical translocation and is the major coupling product. This paper now quantitatively investigates that reaction, which shows a very similar ratio for 3 : 12 [ca. 4 : 1] when using different sources of radical initiation. Deuterium isotope studies provide detailed mechanistic support for the proposed mechanism; when carried out in C6D6vs. C6H6, the reaction is characterised by a strong isotope effect for formation of 3-d10vs. 3, but not for formation of 12-d5vs. 12. These distinctive properties mean that the transformation can act as an assay for aryl radicals. An advantage of such a BHAS process is its sensitivity, since it involves a chain reaction that can amplify radical activity.

5.
Angew Chem Int Ed Engl ; : e202409836, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171407

RESUMEN

Under acidic conditions (TFA) and in the presence of water, BocNHOTs promotes stereospecific 1,2-aminohydroxylations of alkenes. The processes involve intermolecular aza-Prilezhaev aziridination followed by stereospecific SN2 opening by water. This reagent combination provides regiochemical outcomes that are opposite to, or more selective than those observed using epoxidation initiated 1,2-aminohydroxylation protocols. Replacement of water by other nucleophiles allows 1,2-amino(thio)etherification, diamination, aminoazidation and aminofluorination reactions. Intramolecular processes are also feasible, including unusual variants that evoke azabicyclobutane-like reactivity.

6.
Angew Chem Int Ed Engl ; 63(23): e202403670, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470158

RESUMEN

A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of "kagome-NiAs" type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.

7.
Angew Chem Int Ed Engl ; : e202410304, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003723

RESUMEN

Open-shell materials bearing multiple spin centres provide a key route to efficient charge transport in single-molecule electronic devices. They have narrow energy gaps, and their molecular orbitals align closely to the Fermi level of the metallic electrodes, thus allowing efficient electronic transport and higher conductance. Maintaining and stabilising multiple open-shell states-especially in contact with metallic electrodes-is however very challenging, generally requiring a continuous chemical or electrochemical potential to avoid self-immolation of the open-shell character. To overcome this issue, we designed, synthesised, and measured the conductance of a series of bis(indeno) fused acenes, where stability is imparted by a close-shell quinoidal conformation in resonance with the diradical electronic configuration. We show here that these compounds have anti-ohmic behaviour, with conductance increasing with increasing molecular length, at an unprecedented rate and across the entire bias window ( ± 1 . 3 V ${\pm 1.3\ V}$ ). Density Functional Theory (DFT) calculations support our findings, showing the rapidly narrowing HOMO-LUMO gap, unique to these diradicaloid structures, is responsible for the observed behaviour. Our results provide a framework for achieving efficient transport in neutral compounds and demonstrate the promise that diradicaloid materials have in single-molecule electronics, owing to their great stability and unique electronic structure.

8.
Angew Chem Int Ed Engl ; : e202411960, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166719

RESUMEN

Porous materials perform molecular sorting, separation and transformation by interaction between their framework structures and the substrates. Proteins also interact with molecules to effect chemical transformations, but rely on the precise sequence of the amino acid building units along a common polypeptide backbone to maximise their performance. Design strategies that positionally order sidechains over a defined porous framework to diversify the internal surface chemistry would enhance control of substrate processing. Here we show that different sidechains can be ordered over a metal-organic framework through recognition of their distinct chemistries during synthesis. The sidechains are recognised because each one forces the common building unit that defines the backbone of the framework into a different conformation in order to form the extended structure. The resulting sidechain ordering affords hexane isomer separation performance superior to that of the same framework decorated only with sidechains of a single kind. The separated molecules adopt distinct arrangements within the resulting modified pore geometry, reflecting their strongly differentiated environments precisely created by the ordered sidechains. The development of frameworks that recognise  and  order multiple sidechain functionality by conformational control offers tailoring of the internal surfaces within families of porous materials to direct interactions at the molecular level.

9.
J Am Chem Soc ; 145(38): 20849-20858, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37713365

RESUMEN

Palladium salts and complexes were tested separately and in the presence of added ligands as potential sources of aryl radicals in ground-state coupling reactions of aryl halide with arenes under basic conditions (KOtBu). Our recently developed assay for aryl radicals was employed to test for aryl radicals. In this assay, aryl radicals derived from the test substrate, 1-iodo-2,6-dimethylbenzene 7, undergo base-promoted homolytic aromatic substitution (BHAS) with benzene to produce 2,6-dimethylbiphenyl 8 and biphenyl 9 in an approximately 1:4 ratio as well as m-xylene 10. The biphenyl arises from a diagnostic radical transfer reaction with the solvent benzene. Using substrate 7 with a range of Pd sources as potential initiators led to formation of 8, 9, and 10 in varying amounts. However, when any one of a range of diphosphinoferrocenes (e.g., dppf or dippf) or BINAP or the monophosphine, diphenylphosphinoferrocene, was added as a ligand to Pd(OAc)2, the ratio of [2,6-dimethylbiphenyl 8: biphenyl 9] moved decisively to that expected from the BHAS (radical) pathway. Further studies were conducted with dppf. When dppf was added to each of the other Pd sources, the ratio of coupled products was also diverted to that expected for radical BHAS chemistry. Deuterium isotope studies and radical trap experiments provide strong additional support for the involvement of aryl radicals. Accordingly, under these ground-state conditions, palladium sources, in the presence of defined ligands, convert aryl iodides to aryl radicals. A rationale is proposed for these observations.

10.
Angew Chem Int Ed Engl ; 62(48): e202312797, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37846756

RESUMEN

Under acidic reaction conditions (TFA), deprotection of BocNR(OSO2 R) reagents triggers intermolecular aminative cyclizations of alkenes equipped with pendant nucleophiles. The processes are predicated on a sequence of stereospecific intermolecular aza-Prilezhaev aziridination followed by stereospecific SN 2-like opening by the pendant nucleophile. The method offers broad scope with respect to the nucleophile (N-, O- or C-based), alkene and cyclization mode, allowing the installation of two contiguous stereocenters under operationally simple conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA