Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 108(29): 12054-9, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730190

RESUMEN

Cancers frequently arise as a result of an acquired genomic instability and the subsequent clonal evolution of neoplastic cells with variable patterns of genetic aberrations. Thus, the presence and behaviors of distinct clonal populations in each patient's tumor may underlie multiple clinical phenotypes in cancers. We applied DNA content-based flow sorting to identify and isolate the nuclei of clonal populations from tumor biopsies, which was coupled with array CGH and targeted resequencing. The results produced high-definition genomic profiles of clonal populations from 40 pancreatic adenocarcinomas and a set of prostate adenocarcinomas, including serial biopsies from a patient who progressed to androgen-independent metastatic disease. The genomes of clonal populations were found to have patient-specific aberrations of clinical relevance. Furthermore, we identified genomic aberrations specific to therapeutically responsive and resistant clones arising during the evolution of androgen-independent metastatic prostate adenocarcinoma. We also distinguished divergent clonal populations within single biopsies and mapped aberrations in multiple aneuploid populations arising in primary and metastatic pancreatic adenocarcinoma. We propose that our high-definition analyses of the genomes of distinct clonal populations of cancer cells in patients in vivo can help guide diagnoses and tailor approaches to personalized treatment.


Asunto(s)
Adenocarcinoma/genética , Evolución Molecular , Variación Genética , Metástasis de la Neoplasia/genética , Neoplasias Pancreáticas/genética , Neoplasias de la Próstata/genética , Biopsia , Células Clonales , Hibridación Genómica Comparativa , Cartilla de ADN/genética , Citometría de Flujo , Genómica/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa , Medicina de Precisión/métodos , Análisis de Secuencia de ADN
2.
Biol Chem ; 392(8-9): 689-97, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21736496

RESUMEN

Although the septin ring and collar in budding yeast were described over 20 years ago, there is still controversy regarding the organization of septin filaments within these structures and about the way in which the ring first forms and about how it converts into a collar at the mother-bud neck. Here we present quantitative analyses of the recruitment of fluorescently-tagged septins to the ring and collar through the cell cycle. Septin ring assembly began several minutes after polarity establishment and this interval was longer in daughter than in mother cells, suggesting asymmetric inheritance of septin regulators. Septins formed an initial faint and irregular ring, which became more regular as septins were recruited at a constant rate. This steady rate of septin recruitment continued for several minutes after the ring converted to a collar at bud emergence. We did not detect a stepwise change in septin fluorescence during the ring-to-collar transition. After collar formation, septins continued to accumulate at the bud neck, though at a reduced rate, until the onset of cytokinesis when the amount of neck-localized septins rapidly decreased. Implications for the mechanism of septin ring assembly are discussed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética
3.
Methods Mol Biol ; 1077: 133-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014404

RESUMEN

The identification of lysine-acetylated proteins and deacetylase substrates has primarily relied on protein immune-affinity techniques with antibodies that recognize acetylated lysine residues (Kac antibodies). While these antibody-based techniques are continuously improving, they can be limited by the narrow and many times unknown epitope specificity of Kac antibodies. An alternative approach is the biotin switch capture of deacetylated proteins. Similar in part to other biotin switch methodologies, this technique relies on the blocking of native lysine residues and removal of the modification of interest in vitro, after which the newly deacetylated proteins can be captured and identified by mass spectrometry (MS). In this chapter, we cover the essential steps of the procedure, highlight key points in the assay to reduce false positive protein identification, and discuss the quantitative MS methods useful for identifying the captured deacetylase substrates. We also discuss potential strategies and future improvements to overcome current limitations of the assay.


Asunto(s)
Biotina/metabolismo , Cromatografía Liquida/métodos , Inmunoprecipitación/métodos , Lisina/metabolismo , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Xenopus laevis/metabolismo , Acetilación , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Afinidad de Anticuerpos , Cromatografía de Afinidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA