RESUMEN
Synthetic polymers, such as plastics, have permeated all aspects of modern life, and nowadays plastic pollution is a major environmental problem. Mycodegradation of these polymers could represent part of the solution to this problem since it calls on a broad toolbox of enzymes and applies non-enzymatic mechanisms to degrade and deteriorate recalcitrant materials. However, not enough is known about this ability for most of the representatives of the fungal kingdom. Another bottleneck is the harmonisation of technologies to analyse plastic degradation. This work involved the design of a biodegradation experiment, where the potential of four fungi representative of Dikarya and Penicillia (Funalia floccosa, Trametes versicolor, Pycnoporus cinnabarinus and Penicillium oxalicum) were tested on their ability to deteriorate the six most used plastics based on gravimetry and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The following correlation between changes in the band signals and the loss of mass after treatment was determined using polyethylene terephthalate, polypropylene, polyethylene, poly vinyl chloride, high density polyethylene, low density polyethylene and nylon. After treatment, the decrease in absorbance of the characteristic bands of the plastics was taken as an indication of the degradation of the corresponding bonds/functionalities. The four fungi used could transform CH, CH2, CH3, CO, CO, CN, NH and CCl bonds. The best result was obtained using the fungus F. floccosa with 90-day treatments for high density polyethylene (â¼ 62.0â¯%), low density polyethylene (â¼ 23.6â¯%) and nylon (â¼ 35.6â¯%). Therefore, mycodegradation could open up new doors in the fight against plastic pollution.
RESUMEN
Abundant plant species in arid industrial areas are mining phyto-resources for sustainable phyto-management. However, the association with their rhizosphere is still poorly known for phytoremediation purposes. This study aims to assess the heavy metals (HMs) and metalloids uptake of Lygeum spartum Loefl. ex L. growing in cement plant vicinity and screen associated culturome for potential phytoremediation use. Bioaccumulation factor (BAF), the translocation factor (TF), and the mobility ratio (MR) were studied along with four sites. Lipid peroxidation (MDA), free proline (Pro), Non-protein thiols (NPTs), and reduced glutathione (GSH) were tested for evaluating the plant antioxidative response. Bacteria and fungi associated with L. spartum Loefl. ex L. were identified by 16S rRNA and fungal internal transcribed spacer (ITS1-ITS2) gene sequencing. Our results showed an efficient uptake of As, Pb, and Zn and enhanced GSH (0.34 ± 0.03) and NPTs (528.7 ± 14.4 nmol g-1 FW) concentrations in the highly polluted site. No significant variation of Arbuscular Mycorrhizal Fungi (AMF) was found. Among 29 bacterial isolates, potential bioremediation were Bacillus simplex and Bacillus atrophaeus. Thus, L. spartum Loefl. ex L. and its associated microbiota have the potential for phytoremediation applications. Novelty statement: This work has been set in line with the investigation of the integrative biology of Lygeum spartum Loefl ex L. and the screening of its associated microbiome for potential phytoremediation applications. This work is the first work conducted in a cement plant vicinity investigating the associated fungi and bacteria of L. spartum Loefl. ex L. and been part of a sectorial research project since 2011, for assessing the impact of industrial pollution and recognizing the accumulation potential of plant species for further phyto-management applications.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Antioxidantes , ARN Ribosómico 16S , Estudios Prospectivos , Poaceae , Metales Pesados/análisis , Plantas , Contaminantes del Suelo/análisis , SueloRESUMEN
The addition of compost from sewage sludge to soils represents a sustainable option from an environmental and economic point of view, which involves the valorisation of these wastes. However, before their use as a soil amendment, compost has to reach the quality levels according to the normative, including microbial parameters. Viruses are not included in this regulation and they can produce agricultural problems and human diseases if the compost is not well sanitised. In this study, we carried out the analysis of the viral populations during a composting process with sewage sludge at an industrial scale, using semipermeable cover technology. Viral community was characterised by the presence of plant viruses and bacteriophages of enteric bacteria. The phytopathogen viruses were the group with the highest relative abundance in the sewage sludge sample and at 70 days of the composting process. The diversity of bacterial viruses and their specificity, with respect to the more abundant bacterial taxa throughout the process, highlights the importance of the interrelations between viral and bacterial communities in the control of pathogenic communities. These results suggest the possibility of using them as a tool to predict the effectiveness of the process.
Asunto(s)
Compostaje , Aguas del Alcantarillado/virología , Microbiología del Suelo , Virus/aislamiento & purificación , Compostaje/métodos , España , Fenómenos Fisiológicos de los Virus , Virus/clasificaciónRESUMEN
Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable cover in the composting of sewage sludge allow a noticeable reduction in the process-time comparing to conventional open windrows.
Asunto(s)
Compostaje , Aguas del Alcantarillado , Bacterias , SueloRESUMEN
The global pharmaceutical pollution caused by drug consumption (>100,000 tonnes) and its disposal into the environment is an issue which is currently being addressed by bioremediation techniques, using single or multiple microorganisms. Nevertheless, the low efficiency and the selection of non-compatible species interfere with the success of this methodology. This paper proposes a novel way of obtaining an effective multi-domain co-culture, with the capacity to degrade multi-pharmaceutical compounds simultaneously. To this end, seven microorganisms (fungi and bacteria) previously isolated from sewage sludge were investigated to enhance their degradation performance. All seven strains were factorially mixed and used to assemble different artificial co-cultures. Consequently, 127 artificial co-cultures were established and ranked, based on their fitness performance, by using the BSocial analysis web tool. The individual strains were categorized according to their social behaviour, whose net effect over the remaining strains was defined as 'Positive', 'Negative' or 'Neutral'. To evaluate the emerging-pollutant degradation rate, the best 10 co-cultures, and those which contained the social strains were then challenged with three different Pharmaceutical Active compounds (PhACs): diclofenac, carbamazepine and ketoprofen. The co-cultures with the fungi Penicillium oxalicum XD-3.1 and Penicillium rastrickii were able to degrade PhACs. However, the highest performance (>80% degradation) was obtained by the minimal active microbial consortia consisting of both Penicillium spp., Cladosporium cladosporoides and co-existing bacteria. These consortia transformed the PhACs to derivate molecules through hydroxylation and were released to the media, resulting in a low ecotoxicity effect. High-throughput screening of co-cultures provides a quick, reliable and efficient method to narrow down suitable degradation co-cultures for emerging PhAC contaminants while avoiding toxic metabolic derivatives.
Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Técnicas de Cocultivo , Contaminantes Ambientales/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Preparaciones Farmacéuticas/metabolismoRESUMEN
Emerging and unregulated contaminants end up in soils via stabilized/composted sewage sludges, paired with possible risks associated with the development of microbial resistance to antimicrobial agents or an imbalance in the microbial communities. An enrichment experiment was performed, fortifying the sewage sludge with carbamazepine, ketoprofen and diclofenac as model compounds, with the aim to obtain strains with the capability to transform these pollutants. Culturable microorganisms were obtained at the end of the experiment. Among fungi, Cladosporium cladosporioides, Alternaria alternata and Penicillium raistrickii showed remarkable degradation rates. Population shifts in bacterial and fungal communities were also studied during the selective pressure using Illumina MiSeq. These analyses showed a predominance of Ascomycota (Dothideomycetes and Aspergillaceae) and Actinobacteria and Proteobacteria, suggesting the possibility of selecting native microorganisms to carry out bioremediation processes using tailored techniques.
RESUMEN
The objective of this study was the development and design of a treatment system at a pilot-plant scale for the remediation of hydrocarbons in industrial wastewater. The treatment consists of a combined approach of absorption and biodegradation to obtain treated water with sufficient quality to be reused in fire defense systems (FDSs). The plant consists of four vertical flow columns (bioreactors) made of stainless steel (ATEX Standard) with dimensions of 1.65 × 0.5 m and water volumes of 192.4 L. Each bioreactor includes a holder to contain the absorbent material (Pad Sentec polypropylene). The effectiveness of the treatment system has been studied in wastewater with high and low pollutant loads (concentrations higher than 60,000 mg L-1 of total petroleum hydrocarbons (TPH) and lower than 500 mg L-1 of TPHs, respectively). The pilot-plant design can function at two different flow rates, Q1 (180 L h-1) and Q2 (780 L h-1), with or without additional aeration. The results obtained for strongly polluted wastewaters showed that, at low flow rates, additional aeration enhanced hydrocarbon removal, while aeration was unnecessary at high flow rates. For wastewater with a low pollutant load, we selected a flow rate of 780 L h-1 without aeration. Different recirculation times were also tested along with the application of a post-treatment lasting 7 days inside the bioreactor without recirculation. The microbial diversity studies showed similar populations of bacteria and fungi in the inlet and outlet wastewater. Likewise, high similarity indices were observed between the adhered and suspended biomass within the bioreactors. The results showed that the setup and optimization of the reactor represent a step forward in the application of bioremediation processes at an industrial/large scale.