Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 80: 163-172, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778408

RESUMEN

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Asunto(s)
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Succinatos/metabolismo
2.
Fungal Biol Biotechnol ; 10(1): 15, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422681

RESUMEN

BACKGROUND: Fungi have been utilized for centuries in medical, agricultural, and industrial applications. Development of systems biology techniques has enabled the design and metabolic engineering of these fungi to produce novel fuels, chemicals, and enzymes from renewable feedstocks. Many genetic tools have been developed for manipulating the genome and creating mutants rapidly. However, screening and confirmation of transformants remain an inefficient step within the design, build, test, and learn cycle in many industrial fungi because extracting fungal genomic DNA is laborious, time-consuming, and involves toxic chemicals. RESULTS: In this study we developed a rapid and robust technique called "Squash-PCR" to break open the spores and release fungal genomic DNA as a template for PCR. The efficacy of Squash-PCR was investigated in eleven different filamentous fungal strains. Clean PCR products with high yields were achieved in all tested fungi. Spore age and type of DNA polymerase did not affect the efficiency of Squash-PCR. However, spore concentration was found to be the crucial factor for Squash-PCR in Aspergillus niger, with the dilution of starting material often resulting in higher PCR product yield. We then further evaluated the applicability of the squashing procedure for nine different yeast strains. We found that Squash-PCR can be used to improve the quality and yield of colony PCR in comparison to direct colony PCR in the tested yeast strains. CONCLUSION: The developed technique will enhance the efficiency of screening transformants and accelerate genetic engineering in filamentous fungi and yeast.

3.
Biotechnol Biofuels Bioprod ; 16(1): 53, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991437

RESUMEN

BACKGROUND: Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS: In this study, the 3-HP ß-alanine pathway consisting of aspartate decarboxylase, ß-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the ß-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional ß-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS: The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.

4.
ACS Synth Biol ; 10(5): 1000-1008, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33915043

RESUMEN

Oleaginous yeast, such as Lipomyces starkeyi, are logical organisms for production of higher energy density molecules like lipids and terpenes. We demonstrate that transgenic L. starkeyi strains expressing an α-zingiberene synthase gene from lemon basil or Hall's panicgrass can produce up to 17 mg/L α-zingiberene in yeast extract peptone dextrose (YPD) medium containing 4% glucose. The transgenic strain was further examined in 8% glucose media with C/N ratios of 20 or 100, and YPD. YPD medium resulted in 59 mg/L α-zingiberene accumulation. Overexpression of selected genes from the mevalonate pathway achieved 145% improvement in α-zingiberene synthesis. Optimization of the growth medium for α-zingiberene production led to 15% higher titer than YPD medium. The final transgenic strain produced 700 mg/L α-zingiberene in fed-batch bioreactor culture. This study opens a new synthetic route to produce α-zingiberene or other terpenoids in L. starkeyi and establishes this yeast as a platform for jet fuel biosynthesis.


Asunto(s)
Ingeniería Genética/métodos , Lipomyces/genética , Lipomyces/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Medios de Cultivo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos , Glucosa/metabolismo , Hidrocarburos/metabolismo , Lípidos/biosíntesis , Lipomyces/crecimiento & desarrollo , Ácido Mevalónico/metabolismo , Microorganismos Modificados Genéticamente , Ocimum basilicum/enzimología , Ocimum basilicum/genética , Panicum/enzimología , Panicum/genética , Transducción de Señal/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA