Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423307

RESUMEN

Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aß42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Plomo , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Homeostasis , Células Madre Pluripotentes Inducidas/patología , Plomo/toxicidad , Neuronas/patología
2.
Mol Cell Proteomics ; 21(12): 100441, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36379402

RESUMEN

Hyperphosphorylation of the microtubule-associated protein Tau is a major hallmark of Alzheimer's disease and other tauopathies. Understanding the protein kinases that phosphorylate Tau is critical for the development of new drugs that target Tau phosphorylation. At present, the repertoire of the Tau kinases remains incomplete, and methods to uncover novel upstream protein kinases are still limited. Here, we apply our newly developed proteomic strategy, fluorescence complementation mass spectrometry, to identify novel kinase candidates of Tau. By constructing Tau- and kinase-fluorescent fragment library, we detected 59 Tau-associated kinases, including 23 known kinases of Tau and 36 novel candidate kinases. In the validation phase using in vitro phosphorylation, among 15 candidate kinases we attempted to purify and test, four candidate kinases, OXSR1 (oxidative-stress responsive gene 1), DAPK2 (death-associated protein kinase 2), CSK (C-terminal SRC kinase), and ZAP70 (zeta chain of T-cell receptor-associated protein kinase 70), displayed the ability to phosphorylate Tau in time-course experiments. Furthermore, coexpression of these four kinases along with Tau increased the phosphorylation of Tau in human neuroglioma H4 cells. We demonstrate that fluorescence complementation mass spectrometry is a powerful proteomic strategy to systematically identify potential kinases that can phosphorylate Tau in cells. Our discovery of new candidate kinases of Tau can present new opportunities for developing Alzheimer's disease therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Proteómica , Proteínas tau/genética , Fosforilación , Espectrometría de Masas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
3.
J Biol Chem ; 298(1): 101437, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801556

RESUMEN

Small-molecule modulators of autophagy have been widely investigated as potential therapies for neurodegenerative diseases. In a recent issue of JBC, Safren et al. described a novel assay that uses a photoconvertible fusion protein to identify compounds that alter autophagic flux. Autophagy inducers identified using this assay were found to either alleviate or exacerbate neurotoxicity in different cellular models of amyotrophic lateral sclerosis, challenging the notion that autophagy stimulation can be used as a one-size-fits-all therapy for neurodegenerative disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Autofagia , Humanos , Enfermedades Neurodegenerativas/metabolismo
4.
Anal Chem ; 95(49): 18241-18248, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014879

RESUMEN

A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential Alzheimer's disease (AD) biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in neurofibrillary tangles (NFTs) of AD brains, and CSF levels of pT181-tau correlate with the overall NFT burden. Various immunobased analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods is dependent on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could, in principle, be affected by phosphorylation within or near the antibody's cognate antigen, such effects have not been extensively studied. Here, we developed a biolayer interferometry assay to determine the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated. These findings highlight the importance of selecting antibodies that have been thoroughly characterized in terms of affinity and binding specificity, addressing the potential disruptive effects of post-translational modifications in the epitope region to ensure accurate biomarker quantitation.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Fosforilación , Proteínas tau/química , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Antígenos/metabolismo , Epítopos/metabolismo , Treonina/metabolismo , Biomarcadores/metabolismo
5.
J Neurosci ; 41(49): 10194-10208, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34716231

RESUMEN

With the wide adoption of genomic sequencing in children having seizures, an increasing number of SCN2A genetic variants have been revealed as genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is predominantly expressed in the pyramidal excitatory neurons and supports action potential (AP) firing. One recurrent SCN2A genetic variant is L1342P, which was identified in multiple patients with epileptic encephalopathy and intractable seizures. However, the mechanism underlying L1342P-mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human-induced pluripotent stem cell (hiPSC) line from a male donor, in which L1342P was introduced by CRISPR/Cas9-mediated genome editing. Using patch-clamping and microelectrode array (MEA) recordings, we revealed that cortical neurons derived from hiPSCs carrying heterozygous L1342P variant have significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, suggesting hyperexcitability phenotypes. Interestingly, L1342P neuronal culture displayed a degree of resistance to the anticonvulsant medication phenytoin, which recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a Nav1.2 isoform-specific blocker, can potently alleviate spontaneous and chemically-induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.SIGNIFICANCE STATEMENT A mounting number of SCN2A genetic variants have been identified from patients with epilepsy, but how SCN2A variants affect the function of human neurons contributing to seizures is still elusive. This study investigated the functional consequences of a recurring SCN2A variant (L1342P) using human iPSC-derived neurons and revealed both intrinsic and network hyperexcitability of neurons carrying a mutant Nav1.2 channel. Importantly, this study recapitulated elements of clinical observations of drug-resistant features of the L1342P variant, and provided a platform for in vitro drug testing. Our study sheds light on cellular mechanism of seizures resulting from a recurring Nav1.2 variant, and helps to advance personalized drug discovery to treat patients carrying pathogenic SCN2A variant.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Edición Génica/métodos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neuronas/patología , Corteza Cerebral/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/fisiología , Mutación
6.
Neurobiol Dis ; 134: 104629, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31669752

RESUMEN

The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into ß-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue. These findings suggest that the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could then contribute to AD and PD disease onset and progression.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Ovillos Neurofibrilares/química , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Enfermedad de Parkinson/metabolismo , Placa Amiloide/química , Placa Amiloide/metabolismo , Placa Amiloide/patología , Agregado de Proteínas , Agregación Patológica de Proteínas/patología , Conformación Proteica en Lámina beta , Proteína Desglicasa DJ-1/química
8.
Mol Cell Neurosci ; 88: 70-82, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414104

RESUMEN

Growing evidence suggests that oxidative stress plays a critical role in neuronal destruction characteristic of Parkinson's disease (PD). However, the molecular mechanisms of oxidative stress-mediated dopaminergic cell death are far from clear. In the current investigation, we tested the hypothesis that acrolein, an oxidative stress and lipid peroxidation (LPO) product, is a key factor in the pathogenesis of PD. Using a combination of in vitro, in vivo, and cell free models, coupled with anatomical, functional, and behavioral examination, we found that acrolein was elevated in 6-OHDA-injected rats, and behavioral deficits associated with 6-OHDA could be mitigated by the application of the acrolein scavenger hydralazine, and mimicked by injection of acrolein in healthy rats. Furthermore, hydralazine alleviated neuronal cell death elicited by 6-OHDA and another PD-related toxin, rotenone, in vitro. We also show that acrolein can promote the aggregation of alpha-synuclein, suggesting that alpha-synuclein self-assembly, a key pathological phenomenon in human PD, could play a role in neurotoxic effects of acrolein in PD models. These studies suggest that acrolein is involved in the pathogenesis of PD, and the administration of anti-acrolein scavengers such as hydralazine could represent a novel strategy to alleviate tissue damage and motor deficits associated with this disease.


Asunto(s)
Acroleína/farmacología , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Línea Celular , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
9.
Neurobiol Dis ; 106: 191-204, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28711409

RESUMEN

The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nortriptilina/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Antidepresivos Tricíclicos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Drosophila , Escherichia coli , Humanos , Masculino , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Desplegamiento Proteico/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética
10.
J Biol Chem ; 290(41): 24816-34, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26306045

RESUMEN

The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Estrés Oxidativo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas de Choque Térmico/química , Humanos , Ácido Láctico/metabolismo , Lactoilglutatión Liasa/metabolismo , Datos de Secuencia Molecular , Priones/química , Agregado de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Piruvaldehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
11.
Opt Lett ; 41(23): 5575, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906242

RESUMEN

This note points out a number of corrections that were omitted from the published version of the article [Opt. Lett.41, 5230 (2016)OPLEDP0146-959210.1364/OL.41.005230].

12.
Opt Lett ; 41(22): 5230-5233, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27842100

RESUMEN

Three-dimensional (3D) printing allows for complex or physiologically realistic phantoms, useful, for example, in developing biomedical imaging methods and for calibrating measured data. However, available 3D printing materials provide a limited range of static optical properties. We overcome this limitation with a new method using stereolithography that allows tuning of the printed phantom's optical properties to match that of target tissues, accomplished by printing a mixture of polystyrene microspheres and clear photopolymer resin. We show that Mie theory can be used to design the optical properties, and demonstrate the method by fabricating a mouse phantom and imaging it using fluorescence optical diffusion tomography.


Asunto(s)
Fluorescencia , Óptica y Fotónica , Fantasmas de Imagen , Impresión Tridimensional , Animales , Calibración , Diagnóstico por Imagen , Diseño de Equipo , Ratones
13.
Biopolymers ; 105(10): 715-24, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27177831

RESUMEN

Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016.


Asunto(s)
Agregado de Proteínas , Multimerización de Proteína , alfa-Sinucleína/química , Sustitución de Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Mutación Missense , Estructura Cuaternaria de Proteína , Electricidad Estática , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Biophys J ; 108(8): 2038-47, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25902443

RESUMEN

The aggregation of α-synuclein (α-Syn) is linked to Parkinson's disease. The mechanism of early aggregation steps and the effect of pathogenic single-point mutations remain elusive. We report here a single-molecule fluorescence study of α-Syn dimerization and the effect of mutations. Specific interactions between tethered fluorophore-free α-Syn monomers on a substrate and fluorophore-labeled monomers diffusing freely in solution were observed using total internal reflection fluorescence microscopy. The results showed that wild-type (WT) α-Syn dimers adopt two types of dimers. The lifetimes of type 1 and type 2 dimers were determined to be 197 ± 3 ms and 3334 ± 145 ms, respectively. All three of the mutations used, A30P, E46K, and A53T, increased the lifetime of type 1 dimer and enhanced the relative population of type 2 dimer, with type 1 dimer constituting the major fraction. The kinetic stability of type 1 dimers (expressed in terms of lifetime) followed the order A30P (693 ± 14 ms) > E46K (292 ± 5 ms) > A53T (226 ± 6 ms) > WT (197 ± 3 ms). Type 2 dimers, which are more stable, had lifetimes in the range of several seconds. The strongest effect, observed for the A30P mutant, resulted in a lifetime 3.5 times higher than observed for the WT type 1 dimer. This mutation also doubled the relative fraction of type 2 dimer. These data show that single-point mutations promote dimerization, and they suggest that the structural heterogeneity of α-Syn dimers could lead to different aggregation pathways.


Asunto(s)
Multimerización de Proteína , alfa-Sinucleína/química , Mutación Puntual , alfa-Sinucleína/genética
15.
Neurobiol Dis ; 79: 150-63, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25931201

RESUMEN

The post-mortem brains of individuals with Parkinson's disease (PD) and other synucleinopathy disorders are characterized by the presence of aggregated forms of the presynaptic protein α-synuclein (aSyn). Understanding the molecular mechanism of aSyn aggregation is essential for the development of neuroprotective strategies to treat these diseases. In this study, we examined how interactions between aSyn and phospholipid vesicles influence the protein's aggregation and toxicity to dopaminergic neurons. Two-dimensional NMR data revealed that two familial aSyn mutants, A30P and G51D, populated an exposed, membrane-bound conformer in which the central hydrophobic region was dissociated from the bilayer to a greater extent than in the case of wild-type aSyn. A30P and G51D had a greater propensity to undergo membrane-induced aggregation and elicited greater toxicity to primary dopaminergic neurons compared to the wild-type protein. In contrast, the non-familial aSyn mutant A29E exhibited a weak propensity to aggregate in the presence of phospholipid vesicles or to elicit neurotoxicity, despite adopting a relatively exposed membrane-bound conformation. Our findings suggest that the aggregation of exposed, membrane-bound aSyn conformers plays a key role in the protein's neurotoxicity in PD and other synucleinopathy disorders.


Asunto(s)
Supervivencia Celular/fisiología , Neuronas Dopaminérgicas/fisiología , Membranas Artificiales , Mesencéfalo/fisiología , alfa-Sinucleína/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Escherichia coli , Humanos , Mutación , Neuritas/patología , Neuritas/fisiología , Estructura Secundaria de Proteína , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
17.
Neurobiol Dis ; 81: 76-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25497688

RESUMEN

Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.


Asunto(s)
Cobre/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteolisis/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Neuronas Dopaminérgicas/metabolismo , Embrión de Mamíferos , Humanos , Leupeptinas/farmacología , Mesencéfalo/citología , Mutación/genética , Neuroblastoma/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
18.
Biochem Biophys Res Commun ; 464(1): 342-7, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26129772

RESUMEN

The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of ß-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation.


Asunto(s)
Amiloide/química , Cobre/química , Flavanonas/química , alfa-Sinucleína/química , Amiloide/ultraestructura , Benzotiazoles , Cationes Bivalentes , Humanos , Cinética , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Agregado de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Espectrometría de Fluorescencia , Tiazoles
19.
Mol Cell Proteomics ; 11(2): M111.010892, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22104028

RESUMEN

Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD.


Asunto(s)
Cisteína/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Ácidos Sulfínicos/metabolismo , Sustitución de Aminoácidos , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Metionina/química , Metionina/metabolismo , Proteínas Oncogénicas/genética , Oxidantes/farmacología , Oxidación-Reducción , Fragmentos de Péptidos/metabolismo , Proteína Desglicasa DJ-1 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Sci Total Environ ; 908: 168307, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949145

RESUMEN

Atrazine (ATZ) is one of the most used herbicides in the US and a known endocrine disruptor. ATZ is frequently detected in drinking water, especially in Midwestern regions of the United States, exceeding the EPA regulation of maximum contamination level (MCL) of 3 ppb. Epidemiology studies have suggested an association between ATZ exposure and neurodegeneration. Less, however, is known about the neurotoxic mechanism of ATZ, particularly for exposures at a developmental stage. Here, we exposed floor plate progenitors (FPPs) derived from human induced pluripotent stem cells (hiPSCs) to low concentrations of ATZ at 0.3 and 3 ppb for two days followed by differentiation into dopaminergic (DA) neurons in ATZ-free medium. We then examined the morphology, activity, pathological protein aggregation, and transcriptomic changes of differentiated DA neurons. We observed significant decrease in the complexity of neurite network, increase of neuronal activity, and elevated tau- and α-synuclein (aSyn) pathologies after ATZ exposure. The ATZ-induced neuronal changes observed here align with pathological characteristics in Parkinson's disease (PD). Transcriptomic analysis further corroborates our findings; and collectively provides a strong evidence base that low-concentration ATZ exposure during development can elicit increased risk of neurodegeneration.


Asunto(s)
Atrazina , Herbicidas , Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Atrazina/toxicidad , Neuronas Dopaminérgicas , Herbicidas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA