Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Appl Acarol ; 89(1): 85-103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36482230

RESUMEN

The lone star tick, Amblyomma americanum L., is a three-host hard tick notorious for aggressive feeding behavior. In the early to mid-20th century, this species' range was mostly limited to the southern USA. Since the 1950s, A. americanum has been detected in many new localities in the western, northcentral, and northeastern regions of the country. To examine the influence of climate on this apparent expansion, we used historical (1748-1950) lone star locations from the literature and museum records to model areas suitable for this species based on past environmental conditions in the late 1800s - early 1900s. We then projected this model forward using present (2011-2020) climatic conditions and compared the two for evidence of climate-associated distributional shifts. A maximum entropy distribution or Maxent model was generated by using a priori selected climatic variables including temperature, precipitation, and vapor pressure deficit. Temperature and vapor pressure deficit were selected as the most important factors in creating a sensitive and specific model (success rate = 82.6 ± 6.1%) that had a good fit to the existing data and was significantly better than a random model [partial ROC (receiver operating characteristic) to AUC (area under the ROC curve) ratio = 1.97 ± 0.07, P < 0.001]. The present projected model was tested with an independent dataset of curated museum records (1952-2020) and found to be 95.6% accurate. Comparison of past and present models revealed > 98% A. americanum niche overlap. The model suggests that some areas along the western fringe are becoming less suitable for A. americanum, whereas areas in some Great Lakes and coastal northeastern regions are becoming more suitable, results that are compatible with possible effects of climate change. However, these changes are minor, and overall climate in North America does not appear to have changed in ways significant to A. americanum's distribution. These findings are consistent with an alternative hypothesis that recent changes in A. americanum's distribution are a result of this species re-occupying its historical range, driven predominantly by factors other than climate, such as shifts in land use and population densities of major hosts.


Asunto(s)
Ixodidae , Animales , Amblyomma , Entropía , Cambio Climático , Temperatura
2.
BMC Public Health ; 19(1): 804, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234827

RESUMEN

Malaria and Lyme disease were the largest vector-borne epidemics in recent US history. Malaria, a mosquito-borne disease with intense transmission, had higher morbidity and mortality, whereas Lyme and other tick-borne diseases are more persistent in the environment. The responses to these two epidemics were markedly different. The anti-malaria campaign involved large-scale public works eradicating the disease within two decades. In contrast, Lyme disease control and prevention focused on the individual, advocating personal protection and backyard control, with the disease incidence steeply increasing since 1980s. Control of Lyme and other tick-borne diseases will require a paradigm shift emphasizing measures to reduce tick and host (deer) populations and a substantial R&D effort. These steps will require changing the political climate, perceptions and opinions to generate support among governmental levels and the general public. Such support is essential for providing a real solution to one of the most intractable contemporary public health problems.


Asunto(s)
Epidemias , Enfermedad de Lyme/epidemiología , Malaria/epidemiología , Salud Pública/tendencias , Animales , Vectores de Enfermedades , Humanos , Mosquitos Vectores , Garrapatas , Estados Unidos/epidemiología
3.
J Invertebr Pathol ; 168: 107273, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672506

RESUMEN

We examined manipulation of mosquito behavior by the parasitic mermithid nematode, Strelkovimermis spiculatus. This nematode species typically infects early instar host larvae and emerges after parasitic development to kill last-instar larvae. Parasitized adults, however, have occasionally been reported from field collections. We obtained low rates (1.7-11.5%) of parasitized adults in laboratory exposures only when Culex pipiens pipiens fourth-instar larvae nearing pupation were exposed to infective nematodes. This did not allow an adequate interval for parasitic development in immature host stages. Parasitized adult females in a multiple-choice assay were three times more likely to seek water than a blood source (63.1 vs. 20.5%), whereas uninfected females were twice as likely to seek blood than water (64%3.9 vs. 32.6%). This altered host behavior benefits the parasite by providing the only mechanism for dispersal and colonization of new host habitats while concurrently avoiding risks from the defensive behaviors associated with blood-feeding. Behavioral alternation in Cx. p. pipiens larval hosts was also examined using larvae infected as second instars to allow for a normal duration of parasitic development. As larvae neared pupation and parasite emergence, parasitized larvae became more spatially aggregated than unparasitized larvae. This altered host behavior benefits the parasite by providing a corresponding increase in post-parasite aggregation, which facilitates formation of large mating clusters and concomitantly reproductive success. Parasites derive fitness gains by overriding host autonomy, whereas hosts have zero fitness once parasitism is established, suggesting a coevolutionary response is inoperative and that the behavioral modifications may be adaptive.


Asunto(s)
Culex/parasitología , Mermithoidea/fisiología , Distribución Animal , Animales , Conducta Alimentaria , Interacciones Huésped-Parásitos , Larva/parasitología
4.
Ecology ; 98(8): 2059-2068, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28418218

RESUMEN

The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise.


Asunto(s)
Culicidae/fisiología , Inundaciones/estadística & datos numéricos , Luna , Humedales , Animales , Ecosistema , Estuarios , Peces , Reproducción
5.
J Med Entomol ; 53(2): 454-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26520482

RESUMEN

Container-inhabiting Aedes are among the most medically important mosquito vectors of diseases. They also impact health and quality of life by their persistent and severe biting. Monitoring of container-inhabiting Aedes species is challenging due to the need for specialized traps and lures. Biogents Sentinel (BGS) trap has become a standard for Aedes albopictus (Skuse) surveillance; however, it has substantial problems with durability, quality of construction, and sample exposure to the elements. The goal of this study was to develop a methodology for collecting medically important container-inhabiting Aedes species in numbers sufficient for population trend analysis, control efficacy studies, and pathogen testing. Mosquito Magnets (MM) baited with BG lure and R-octenol were selected as the most practical alternative to BGS, collecting significantly more Ae. albopictus (32.1 ± 0.7 vs. 5.6 ± 0.1), Aedes japonicus (Theobald) (10.1 ± 0.4 vs. 1.2 ± 0.02), and Aedes triseriatus (Say) (0.9 ± 0.04 vs. 0.04 ± 0.004) females on average per trapping under a variety of weather conditions. MM can be particularly useful for long-term surveillance or when large numbers of specimens are required for pathogen isolation, such as at the sites with suspected dengue or chikungunya transmission.


Asunto(s)
Aedes , Insectos Vectores , Control de Mosquitos/instrumentación , Animales , Femenino
6.
J Med Entomol ; 61(2): 442-453, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38104248

RESUMEN

With the introduction of siliconized artificial membranes, various artificial feeding systems (AFS) for hard ticks (Ixodidae) have been developed over the last decades. Most AFS utilize similar core components but employ diverse approaches, materials, and experimental conditions. Published work describes different combinations of the core components without experimental optimizations for the artificial feeding of different tick species. Amblyomma americanum L., (Acari: Ixodidae) (lone star tick) is a known vector and reservoir for diverse tick-borne pathogens, such as Rickettsia amblyommatis and Ehrlichia chaffeensis. Ongoing environmental changes have supported the expansion of A. americanum into new habitats, contributing to increased tick-borne diseases in endemic areas. However, a significant knowledge gap exists in understanding the underlying mechanisms involved in A. americanum interactions with tick-borne pathogens. Here, we performed a systematic analysis and developed an optimized AFS for nymphal lone star ticks. Our results demonstrate that Goldbeater's membranes, rabbit hair, hair extract, and adult lone star ticks significantly improved the attachment rate of nymphal ticks, whereas tick frass and frass extract did not. With the optimized conditions, we achieved an attachment rate of 46 ±â€…3% and a success rate of 100% (i.e., one or more attached ticks) in each feeding experiment for nymphal lone star ticks. When fed on sheep blood spiked with R. amblyommatis, both nymphal and adult lone star ticks acquired and maintained R. amblyommatis, demonstrating the feasibility of studying A. americanum-pathogen interactions using AFS. Our study can serve as a roadmap to optimize and improve AFS for other medically relevant tick species.


Asunto(s)
Ixodidae , Rickettsia , Rickettsiaceae , Conejos , Animales , Ovinos , Ixodidae/microbiología , Amblyomma , Rickettsiales , Ninfa/microbiología
7.
Methods Mol Biol ; 2585: 145-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36331772

RESUMEN

Identifying the mosquitoes responsible for transmitting human disease-causing pathogens is of critical importance for effective control of mosquito-borne outbreaks. West Nile virus is often transferred by adult female mosquitoes in the genus Culex, which deposit eggs in a variety of aquatic habitats throughout the world. Herein we describe several methodological approaches to monitor these species in nature, as well as offering details for data collection and analysis.


Asunto(s)
Aedes , Culex , Virus del Nilo Occidental , Animales , Femenino , Humanos , Ecosistema , Brotes de Enfermedades
8.
Ticks Tick Borne Dis ; 14(2): 102088, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436461

RESUMEN

Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.


Asunto(s)
Ixodidae , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Estados Unidos , Ciudad de Nueva York , Georgia , Amblyomma
9.
Ticks Tick Borne Dis ; 14(2): 102126, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682197

RESUMEN

The Asian longhorned tick (Haemaphysalis longicornis) is a vector of multiple arboviral and bacterial pathogens in its native East Asia and expanded distribution in Australasia. This species has both bisexual and parthenogenetic populations that can reach high population densities under favorable conditions. Established populations of parthenogenetic H. longicornis were detected in the eastern United States in 2017 and the possible range of this species at the continental level (North America) based on climatic conditions has been modeled. However, little is known about factors influencing the distribution of H. longicornis at geographic scales relevant to local surveillance and control. To examine the importance of local physiogeographic conditions such as geology, soil characteristics, and land cover on the distribution of H. longicornis we employed ecological niche modeling using three machine learning algorithms - Maxent, Random Forest (RF), and Generalized Boosting Method (GBM) to estimate probability of finding H. longicornis in a particular location in New Jersey (USA), based on environmental predictors. The presence of H. longicornis in New Jersey was positively associated with Piedmont physiogeographic province and two soil types - Alfisols and Inceptisols. Soil hydraulic conductivity was the most important predictor explaining H. longicornis habitat suitability, with more permeable sandy soils with higher hydraulic conductivity being less suitable than clay or loam soils. The models were projected over the state of New Jersey creating a probabilistic map of H. longicornis habitat suitability at a high spatial resolution of 90×90 meters. The model's sensitivity was 87% for locations sampled in 2017-2019 adding to the growing evidence of the importance of soil characteristics to the survival of ticks. For the 2020-2022 dataset the model fit was 57%, suggestive of spillover to less optimal habitats or, alternatively, heterogeneity in soil characteristics at the edges of broad physiographic zones. Further modeling should incorporate abundance and life-stage information as well as detailed characterization of the soil at collection sites. Once critical parameters that drive the survival and abundance of H. longicornis are identified they can be used to guide surveillance and control strategies for this invasive species.


Asunto(s)
Ixodidae , Garrapatas , Animales , New Jersey , Ecosistema , Suelo
10.
J Am Mosq Control Assoc ; 39(3): 192-199, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665399

RESUMEN

The Salt Lake City Mosquito Abatement District (SLCMAD) has been conducting aerial applications using an organophosphate insecticide against adult mosquitoes for several decades. In order to evaluate a potential rotation product, aerial applications of Duet HD™, a pyrethroid, were conducted under operational conditions against wild populations of Aedes dorsalis and Culex tarsalis and against colony strains of Cx. pipiens and Cx. quinquefasciatus. The erratic wind patterns of the greater Salt Lake area did not prevent sufficient droplet deposition flux at 9 monitoring locations spread across a 5,120-acre (2,072 ha) spray block within rural habitats. Three separate aerial application trials showed great efficacy against Ae. dorsalis. In contrast, Cx. tarsalis exhibited inconsistent treatment-associated mortalities, suggesting the presence of less susceptible or resistant field populations as a result of spillover from agricultural or residential pyrethroid usage. Bottle bioassays to diagnose pyrethroid resistance using field-collected Cx. tarsalis indicated that some populations of this species, especially those closest to urban edges, failed to show adequate mortality in resistance assays. Despite challenging weather conditions, Duet HD worked reasonably well against susceptible mosquito species, and it may provide a crucial role as an alternative for organophosphate applications within specific and sensitive areas. However, its area-wide adoption into control applications by the SLCMAD could be problematic due to reduced impacts on the most important arboviral vector species, Cx. tarsalis, in this area. This study demonstrates the importance of testing mosquito control products under different operational environments and against potentially resistant mosquito populations by municipal mosquito control districts.

11.
Parasit Vectors ; 16(1): 11, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635782

RESUMEN

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS: We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS: Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS: Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/epidemiología , Salud Pública , Clima , Brotes de Enfermedades , Predicción
12.
J Med Entomol ; 59(2): 412-420, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35024845

RESUMEN

Amblyomma americanum L. is an important vector in North America originally described by Linnaeus based on Pehr Kalm's 1754 report. While Kalm's 'Travels into North America' is well known, his 1754 report remains obscure. Some authors were skeptical that Kalm referred to A. americanum because he encountered them at sites farther north outside of the species' range. However, the details in 1754 report leave no doubt that Kalm described lone star ticks. In this historical review, we provide support for Kalm's identification using a modern translation of his 1754 report and other sources. We also delineate distributional changes of lone star ticks from the pre-colonization era to the present and interpret them in the context of large-scale anthropogenic changes in the landscape. In this framework, the lone star tick's current northward expansion is a recolonization of their former range. Extensive deforestation and extirpation of their principal host species, white-tailed deer, led to A. americanum's disappearance from the northern parts of its range by the 20th century. Subsequent recolonization by second-growth forest and increases in white-tailed deer populations by the mid-20th century is now allowing A. americanum to reclaim its former range. These changes in the land appear to be the driving force behind A. americanum's present expansion. Understanding this species' history and the factors contributing to its current expansion will enable better predictions about its future distribution and potential to transmit human pathogens.


Asunto(s)
Ciervos , Ixodidae , Amblyomma , Animales , Masculino , América del Norte
13.
Ticks Tick Borne Dis ; 13(6): 102054, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36215766

RESUMEN

Few documented control strategies exist for the invasive tick, Haemaphysalis longicornis, despite its potential to reach extremely high numbers and vector human and animal pathogens. In 2020, we evaluated the effects of single applications of five granular and liquid acaricides on H. longicornis in a public park in northern New Jersey. Acaricides tested included pyrethroids (lambda-cyhalothrin, bifenthrin), a carbamate (carbaryl), and the insect growth regulators (IGRs) pyriproxyfen and novaluron. We also monitored the impact of each treatment on non-target soil and above-ground invertebrate species using pitfall and sticky traps, respectively. We recorded over 70,000 H. longicornis ticks in the study area from July to October 2020. An average of 99% control was achieved with lambda-cyhalothrin spray and 95% with granular bifenthrin. In contrast, granular carbaryl did not significantly reduce any life stages of H. longicornis. The IGR (pyriproxyfen/novaluron) resulted in a significant 45% reduction of the larval stage following treatments in July. No other stages were significantly impacted by pyriproxyfen alone or in combination with novaluron. Analysis of non-target species revealed that the community composition of soil-dwelling arthropods was strongly impacted by pyrethroid treatments and, to a lesser extent, by the carbamate treatment. The granular pyrethroid bifenthrin had more pronounced effects and impacted a broader range of non-target groups in the pitfall traps than the liquid pyrethroid lambda-cyhalothrin. Arthropod groups that were negatively impacted included Isopoda, Formicidae, Coleoptera, Araneae, Acari, and Grylloidea. Collembola numbers, however, were elevated in both pyrethroid treatments. The community composition of arthropods collected on the above-ground sticky traps was strongly impacted only in the liquid lambda-cyhalothrin treatment. The primary groups impacted in the sticky trap analysis were Collembola and Hemiptera. Community composition in traps remained distinct in the pyrethroid treatments through the entire survey period up to 62 days post-treatment. The results of this study indicate that pyrethroid acaricides were highly effective at controlling H. longicornis, while other compounds, including carbaryl and IGRs, did not achieve consistent levels of control. Further research is needed to find effective and environmentally sustainable alternatives. Integrated management programs can include the judicious use of pyrethroids to control H. longicornis.

14.
Sci Rep ; 12(1): 13763, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962013

RESUMEN

Insecticide application for vector control is the most controversial component of a public health program due to concerns about environmental and human health safety. One approach to overcome this challenge is the use of environmentally benign active ingredients. Among the most promising emerging strategies are attractive toxic sugar baits. Sugar alcohols-naturally occurring molecules safe for human consumption but potentially toxic to insects when ingested, have received increased attention for use with this approach. For this study, we screened the toxicity of four different sugar alcohols on several mosquito species, a biting midge, and a filth fly. Sugar alcohol mortalities exceeded those in the sucrose (positive control) only group. However, only erythritol and highly concentrated xylitol induced mortalities exceeding those in the water only (negative control) treatment ranging from approximately 40-75%. Formulations containing erythritol and xylitol should be further investigated under field conditions for efficacy in reducing populations of biting flies and for assessing potential non-target impacts.


Asunto(s)
Culicidae , Alcoholes del Azúcar , Animales , Eritritol/farmacología , Humanos , Control de Mosquitos , Mosquitos Vectores , Xilitol
15.
J Insect Sci ; 11: 172, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22957707

RESUMEN

The aquatic insect fauna of salt marshes is poorly characterized, with the possible exception of biting Diptera. Aquatic insects play a vital role in salt marsh ecology, and have great potential importance as biological indicators for assessing marsh health. In addition, they may be impacted by measures to control mosquitoes such as changes to the marsh habitat, altered hydrology, or the application of pesticides. Given these concerns, the goals of this study were to conduct the first taxonomic survey of salt marsh aquatic insects on Long Island, New York, USA and to evaluate their utility for non-target pesticide impacts and environmental biomonitoring. A total of 18 species from 11 families and five orders were collected repeatedly during the five month study period. Diptera was the most diverse order with nine species from four families, followed by Coleoptera with four species from two families, Heteroptera with three species from three families, then Odonata and the hexapod Collembola with one species each. Water boatmen, Trichocorixa verticalis Fieber (Heteroptera: Corixidae) and a shore fly, Ephydra subopaca Loew (Diptera: Ephydridae), were the two most commonly encountered species. An additional six species; Anurida maritima Guérin-Méneville (Collembola: Neanuridae), Mesovelia mulsanti White (Heteroptera: Mesovelidae), Enochrus hamiltoni Horn (Coleoptera: Hydrophilidae), Tropisternus quadristriatus Horn (Coleoptera: Hydrophilidae), Dasyhelea pseudocincta Waugh and Wirth (Diptera: Ceratopogonidae), and Brachydeutera argentata Walker (Diptera: Ephydridae), were found regularly. Together with the less common Erythrodiplax berenice Drury (Odonata: Libellulidae), these nine species were identified as the most suitable candidates for pesticide and environmental impact monitoring due to abundance, position in the food chain, and extended seasonal occurrence. This study represents a first step towards developing an insect-based index of biological integrity for salt marsh health assessment.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Culicidae , Humedales , Animales , Monitoreo del Ambiente , Larva , Ciudad de Nueva York
16.
Toxicon ; 194: 86-89, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33610637

RESUMEN

Black widow spiders (Latrodectus spp.) are generally perceived as inhabiting southern or western United States. However, some species, such as the northern black widow, Latrodectus variolus, are also found in more temperate regions of USA and adjacent Canada. This species also appears to expand its range northward with the climate change increasing the risk of human encounters. To our knowledge, this is the first case report of a pediatric envenomation from a northern black widow bite in northeastern US. Medical practitioners often fail to recognize the signs and symptoms of latrodectism delaying effective treatment. Even in more northern locales, healthcare workers should take black widow spider envenomation under consideration in the differential diagnosis particularly with suspected exposure.


Asunto(s)
Araña Viuda Negra , Picaduras de Arañas , Venenos de Araña , Animales , Antivenenos , Humanos , New York , Picaduras de Arañas/diagnóstico , Picaduras de Arañas/epidemiología , Resultado del Tratamiento
17.
Sci Rep ; 11(1): 14119, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238977

RESUMEN

Conventional larvicide delivery strategies originally developed for permanent and floodwater mosquitoes have proved suboptimal in the small, scattered, and cryptic larval habitats preferred by container-inhabiting Aedes mosquitoes. New methods such as autodissemination, wherein adult mosquitoes spread insecticides to their own larval habitats, have been under study. Another novel delivery method termed heterodissemination, i.e. larvicide delivery by other species sharing the same habitats, has also been proposed. We conducted a proof-of-concept study with four independent experiments using American bullfrogs (Lithobates catesbeianus) and green frogs Lithobates clamitans as carriers of pyriproxyfen, an insect growth regulator, under semi-field conditions in three different locations, two in New Jersey, and one in Utah. Frogs with attached slow-release pyriproxyfen tablets were introduced into outdoor enclosures with water containers. Water samples from the containers were periodically tested using larval Aedes albopictus and Culex pipiens mosquitoes to assess mortality and percent eclosure inhibition. Overall pupal mortality [95% credible intervals] estimated by Bayesian analysis for the treatment group was 73.4% [71.3-75.2] compared to 4.1% [2.9-5.5] for the control group. Mortality within treatment groups in four different experiments ranged from 41 to 100%, whereas control mortalities ranged from 0.5% to 11%. We conclude that heterodissemination is a promising and effective approach deserving of further study.


Asunto(s)
Culicidae/efectos de los fármacos , Ecosistema , Insecticidas/toxicidad , Control de Mosquitos , Vertebrados/parasitología , Animales , Larva/efectos de los fármacos , New Jersey , Pupa/efectos de los fármacos , Utah
18.
Ecology ; 102(6): e03354, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33797755

RESUMEN

Insects are the most ubiquitous and diverse group of eukaryotic organisms on Earth, forming a crucial link in terrestrial and freshwater food webs. They have recently become the subject of headlines because of observations of dramatic declines in some places. Although there are hundreds of long-term insect monitoring programs, a global database for long-term data on insect assemblages has so far remained unavailable. In order to facilitate synthetic analyses of insect abundance changes, we compiled a database of long-term (≥10 yr) studies of assemblages of insects (many also including arachnids) in the terrestrial and freshwater realms. We searched the scientific literature and public repositories for data on insect and arachnid monitoring using standardized protocols over a time span of 10 yr or longer, with at least two sampling events. We focused on studies that presented or allowed calculation of total community abundance or biomass. We extracted data from tables, figures, and appendices, and, for data sets that provided raw data, we standardized trapping effort over space and time when necessary. For each site, we extracted provenance details (such as country, state, and continent) as well as information on protection status, land use, and climatic details from publicly available GIS sources. In all, the database contains 1,668 plot-level time series sourced from 165 studies with samples collected between 1925 and 2018. Sixteen data sets provided here were previously unpublished. Studies were separated into those collected in the terrestrial realm (103 studies with a total of 1,053 plots) and those collected in the freshwater realm (62 studies with 615 plots). Most studies were from Europe (48%) and North America (29%), with 34% of the plots located in protected areas. The median monitoring time span was 19 yr, with 12 sampling years. The number of individuals was reported in 129 studies, the total biomass was reported in 13 studies, and both abundance and biomass were reported in 23 studies. This data set is published under a CC-BY license, requiring attribution of the data source. Please cite this paper if the data are used in publications, and respect the licenses of the original sources when using (part of) their data as detailed in Metadata S1: Table 1.


Asunto(s)
Arácnidos , Animales , Europa (Continente) , Cadena Alimentaria , Humanos , Insectos , América del Norte
19.
PLoS Negl Trop Dis ; 15(9): e0009653, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499656

RESUMEN

West Nile virus (WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m-km, days-weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input.


Asunto(s)
Toma de Decisiones , Modelos Biológicos , Administración en Salud Pública , Fiebre del Nilo Occidental/prevención & control , Humanos
20.
J Med Microbiol ; 69(6): 781-791, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32478654

RESUMEN

Ticks are the most important vectors of human pathogens, leading to increased public health burdens worldwide. Tick-borne pathogens include viruses (e.g. tick-borne encephalitis and Powassan); bacteria, such as the causative agents of Lyme disease, spotted fever rickettsiosis and human anaplasmosis; and malaria-like protozoan parasites causing babesiosis. Tick-borne diseases are emerging due to the geographical expansion of their tick vectors, especially in the northern hemisphere. Two examples of this phenomenon are Ixodes scapularis and Amblyomma americanum, which have expanded their ranges in the USA in recent decades and are responsible for the continuous emergence of Lyme disease and human ehrlichiosis, respectively. This phenomenon is also occurring worldwide and is reflected by the increasing number of tick-borne encephalitis and haemorrhagic fever cases in Europe and Asia. In this review, we provide a concise synopsis of the most medically important tick-borne pathogen worldwide, with a particular emphasis on emerging public health threats.


Asunto(s)
Salud Pública , Enfermedades por Picaduras de Garrapatas/etiología , Animales , Humanos , Control de Insectos , Insectos Vectores , Mordeduras de Garrapatas/complicaciones , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/virología , Garrapatas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA