Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131859

RESUMEN

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/terapia , Oxazoles/farmacología , Pericardio/efectos de los fármacos , Animales , Materiales Biocompatibles , Calcificación Fisiológica/efectos de los fármacos , Calcinosis/tratamiento farmacológico , Calcinosis/metabolismo , Calcinosis/terapia , Línea Celular , Colágeno/metabolismo , Etanol/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Prótesis Valvulares Cardíacas , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Oxidación-Reducción/efectos de los fármacos , Pericardio/metabolismo , Ratas , Ratas Sprague-Dawley , Células THP-1
2.
Transgenic Res ; 29(3): 355-367, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328868

RESUMEN

Pierce's disease (PD) of grapevine (Vitis vinifera) is caused by the bacterium Xylella fastidiosa and is vectored by xylem sap-sucking insects, whereas Grapevine Red Blotch Virus (GRBV) causes Red Blotch Disease and is transmitted in the laboratory by alfalfa leafhopper Spissistilus festinus. The significance of anthocyanin accumulations in distinct tissues of grapevine by these pathogens is unknown, but vector feeding preferences and olfactory cues from host anthocyanins may be important for these disease etiologies. Phosphate, sugar, and UV light are known to regulate anthocyanin accumulation via miR828 and Trans-Acting Small-interfering locus4 (TAS4), specifically in grape by production of phased TAS4a/b/c small-interfering RNAs that are differentially expressed and target MYBA5/6/7 transcription factor transcripts for post-transcriptional slicing and antisense-mediated silencing. To generate materials that can critically test these genes' functions in PD and GRBV disease symptoms, we produced transgenic grape plants targeting TAS4b and MYBA7 using CRISPR/Cas9 technology. We obtained five MYBA7 lines all with bi-allelic editing events and no off-targets detected at genomic loci with homology to the guide sequence. We obtained two independent edited TAS4b lines; one bi-allelic, the other heterozygous while both had fortuitous evidences of bi-allelic TAS4a off-target editing events at the paralogous locus. No visible anthocyanin accumulation phenotypes were observed in regenerated plants, possibly due to the presence of genetically redundant TAS4c and MYBA5/6 loci or absence of inductive environmental stress conditions. The editing events encompass single base insertions and di/trinucleotide deletions of Vvi-TAS4a/b and Vvi-MYBA7 at expected positions 3 nt upstream from the guideRNA proximal adjacent motifs NGG. We also identified evidences of homologous recombinations of TAS4a with TAS4b at the TAS4a off-target in one of the TAS4b lines, resulting in a chimeric locus with a bi-allelic polymorphism, supporting independent recombination events in transgenic plants associated with apparent high Cas9 activities. The lack of obvious visible pigment phenotypes in edited plants precluded pathogen challenge tests of the role of anthocyanins in host PD and GRBV resistance/tolerance mechanisms. Nonetheless, we demonstrate successful genome-editing of non-coding RNA and MYB transcription factor loci which can serve future characterizations of the functions of TAS4a/b/c and MYBA7 in developmental, physiological, and environmental biotic/abiotic stress response pathways important for value-added nutraceutical synthesis and pathogen responses of winegrape.


Asunto(s)
Antocianinas/biosíntesis , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Vitis/genética , Antocianinas/genética , Genoma de Planta , Mutagénesis , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Vitis/metabolismo
3.
J Am Chem Soc ; 141(38): 15327-15337, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31462037

RESUMEN

N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h-1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co-Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B-H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent.

4.
J Am Chem Soc ; 139(13): 4901-4915, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28282136

RESUMEN

We recently reported a bis(imino)pyridine (or pyridine diimine, PDI) manganese precatalyst, (Ph2PPrPDI)Mn (1), that is active for the hydrosilylation of ketones and dihydrosilylation of esters. In this contribution, we reveal an expanded scope for 1-mediated hydrosilylation and propose two different mechanisms through which catalysis is achieved. Aldehyde hydrosilylation turnover frequencies (TOFs) of up to 4900 min-1 have been realized, the highest reported for first row metal-catalyzed carbonyl hydrosilylation. Additionally, 1 has been shown to mediate formate dihydrosilylation with leading TOFs of up to 330 min-1. Under stoichiometric and catalytic conditions, addition of PhSiH3 to (Ph2PPrPDI)Mn was found to result in partial conversion to a new diamagnetic hydride compound. Independent preparation of (Ph2PPrPDI)MnH (2) was achieved upon adding NaEt3BH to (Ph2PPrPDI)MnCl2 and single-crystal X-ray diffraction analysis revealed this complex to possess a capped trigonal bipyramidal solid-state geometry. When 2,2,2-trifluoroacetophenone was added to 1, radical transfer yielded (Ph2PPrPDI·)Mn(OC·(Ph)(CF3)) (3), which undergoes intermolecular C-C bond formation to produce the respective Mn(II) dimer, [(µ-O,Npy-4-OC(CF3)(Ph)-4-H-Ph2PPrPDI)Mn]2 (4). Upon finding 3 to be inefficient and 4 to be inactive, kinetic trials were conducted to elucidate the mechanisms of 1- and 2-mediated hydrosilylation. Varying the concentration of 1, substrate, and PhSiH3 revealed a first order dependence on each reagent. Furthermore, a kinetic isotope effect (KIE) of 2.2 ± 0.1 was observed for 1-catalyzed hydrosilylation of diisopropyl ketone, while a KIE of 4.2 ± 0.6 was determined using 2, suggesting 1 and 2 operate through different mechanisms. Although kinetic trials reveal 1 to be the more active precatalyst for carbonyl hydrosilylation, a concurrent 2-mediated pathway is more efficient for carboxylate hydrosilylation. Considering these observations, 1-catalyzed hydrosilylation is believed to proceed through a modified Ojima mechanism, while 2-mediated hydrosilylation occurs via insertion.

5.
J Heart Valve Dis ; 25(1): 82-89, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989090

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Aortic valve leaflets have a complex, anisotropic structure that likely plays an important role in their biomechanical function. The larger scale (bulk) biomechanical properties of the valve have been well documented. However, limited data are available regarding the biomechanical properties of individual fiber bundles and membranes that connect the bundles. The study aim was to characterize these intermediate-scale 'mesostructures' and explore biomechanical variability across the three leaflets of the aortic valve. Methods: A custom uniaxial micro-testing system was developed to test mesostructures of the aortic valve leaflet. This system uses elliptically polarized light to enhance collagen features, providing 'texture' for image correlation-based strain measurements. Porcine aortic valve membrane and fiber bundle specimens were subjected to controlled stretch-and-hold tests. Synchronized video and load data were used to measure strain, elastic modulus, relaxation time, and degree of relaxation (among other parameters). These metrics were then compared between specimen types and across the three leaflets. METHODS: A custom uniaxial micro-testing system was developed to test mesostructures of the aortic valve leaflet. This system uses elliptically polarized light to enhance collagen features, providing 'texture' for image correlation-based strain measurements. Porcine aortic valve membrane and fiber bundle specimens were subjected to controlled stretch-and-hold tests. Synchronized video and load data were used to measure strain, elastic modulus, relaxation time, and degree of relaxation (among other parameters). These metrics were then compared between specimen types and across the three leaflets. RESULTS: Fiber bundles were found to have a significantly higher elastic modulus (13.87 ± 2.81 MPa) than the membranes (2.27± 0.36 MPa). Both specimen types had similar relaxation time constants (6.75 ± 0.73 s) and degrees of relaxation (0.223 ± 0.016). The elastic modulus of the fiber bundles from the left coronary and non-coronary leaflets was significantly higher than that of the right coronary leaflet. The fiber bundle elastic modulus also negatively correlated with the fiber bundle width. CONCLUSION: The resulting differences in biomechanical properties of mesostructures are likely related to their biomechanical and hemodynamic requirements. The study findings highlight the importance of considering aortic valve leaflets as inhomogeneous. Further studies are required to characterize the morphologies, nonaffine deformations, and biomechanical properties of the valve's complex fiber-membrane mesostructures, potentially enabling the development of improved models and designs for durable replacement/repair strategies.


Asunto(s)
Válvula Aórtica , Fenómenos Biomecánicos , Tejido Conectivo , Elasticidad , Resistencia a la Tracción , Animales , Porcinos
6.
Plant Biotechnol J ; 12(5): 578-89, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24483851

RESUMEN

Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE) and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA-inducible promoter:GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when coexpressed. Transgenic cotton (Gossypium hirsutum) expressing AtRAV1/2 and/or AtABI5 showed resistance to imposed drought stress under field and greenhouse conditions and exhibited improved photosynthesis and WUEs associated with absorption through larger root system and greater leaf area. We observed synergy for root biomass accumulation in the greenhouse, intrinsic WUE in the field and drought tolerance in stacked AtRAV and AtABI5 double-transgenic cotton. We assessed AtABI5 and AtRAV1/2 involvement in drought stress adaptations through reactive oxygen species scavenging and osmotic adjustment by marker gene expression in cotton. Deficit irrigation-grown AtRAV1/2 and AtABI5 transgenics had 'less-stressed' molecular and physiological phenotypes under drought, likely due to improved photoassimilation and root and shoot sink strengths and enhanced expression of endogenous GhRAV and genes for antioxidant and osmolyte biosynthesis. Overexpression of bZIP and RAV TFs could impact sustainable cotton agriculture and potentially other crops under limited irrigation conditions.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/fisiología , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Riego Agrícola , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Biomasa , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Protoplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transformación Genética , Transgenes , Agua , Zea mays/genética
7.
J Exp Bot ; 65(15): 4217-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24821950

RESUMEN

Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.


Asunto(s)
Arabidopsis/enzimología , Ensamble y Desensamble de Cromatina , Topoisomerasa de ADN IV/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Aumento de la Célula , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Pleiotropía Genética , Luz , Mutación , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo Secundario , Almidón/metabolismo
8.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746173

RESUMEN

Current techniques to image the microstructure of the heart with diffusion tensor MRI (DTI) are highly under-resolved. We present a technique to improve the spatial resolution of cardiac DTI by almost 10-fold and leverage this to measure local gradients in cardiomyocyte alignment or helix angle (HA). We further introduce a phenomapping approach based on voxel-wise hierarchical clustering of these gradients to identify distinct microstructural microenvironments in the heart. Initial development was performed in healthy volunteers (n=8). Thereader, subjects with severe but well-compensated aortic stenosis (AS, n=10) were compared to age-matched controls (CTL, n=10). Radial HA gradient was significantly reduced in AS (8.0±0.8°/mm vs. 10.2±1.8°/mm, p=0.001) but the other HA gradients did not change significantly. Four distinct microstructural clusters could be idenJfied in both the CTL and AS subjects and did not differ significantly in their properties or distribution. Despite marked hypertrophy, our data suggest that the myocardium in well-compensated AS can maintain its microstructural coherence. The described phenomapping approach can be used to characterize microstructural plasticity and perturbation in any organ system and disease.

9.
Plant Mol Biol ; 81(4-5): 447-60, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23341152

RESUMEN

MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing and/or translational inhibition. miRNAs can arise from the "exon" of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5'-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. Arabidopsis lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution.


Asunto(s)
Ácido Abscísico/farmacología , Empalme Alternativo/genética , Arabidopsis/genética , MicroARNs/genética , Raíces de Plantas/genética , Empalme Alternativo/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reordenamiento Génico/genética , Genes de Plantas/genética , Glucuronidasa/metabolismo , MicroARNs/metabolismo , Datos de Secuencia Molecular , Lectinas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
Funct Integr Genomics ; 13(2): 207-16, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23420033

RESUMEN

microRNAs (miRNAs) are a class of small RNAs (sRNAs) of ~21 nucleotides (nt) in length processed from foldback hairpins by dicer-like1 (DCL1) or DCL4. They regulate the expression of target mRNAs by base pairing through RNA-induced silencing complex (RISC). In the RISC, Argonaute1 (AGO1) is the key protein that cleaves miRNA targets at position ten of a miRNA:target duplex. The authenticity of many annotated rice miRNA hairpins is under debate because of their homology to repeat sequences. Some of them, like miR1884b, have been removed from the current release of miRBase based on incomplete information. In this study, we investigated the association of transposable element (TE)-derived miRNAs with typical miRNA pathways (DCL1/4- and AGO1-dependent) using publicly available deep sequencing datasets. Seven miRNA hairpins with 13 unique sRNAs were specifically enriched in AGO1 immunoprecipitation samples and relatively reduced in DCL1/4 knockdown genotypes. Interestingly, these species are ~21-nt long, instead of 24-nt as annotated in miRBase and the literature. Their expression profiles meet current criteria for functional annotation of miRNAs. In addition, diagnostic cleavage tags were found in degradome datasets for predicted target mRNAs. Most of these miRNA hairpins share significant homology with miniature inverted-repeat transposable elements, one type of abundant DNA transposons in rice. Finally, the root-specific production of a 24-nt miRNA-like sRNA was confirmed by RNA blot for a novel EST that maps to the 3'-UTR of a candidate pseudogene showing extensive sequence homology to miR1884b hairpin. Our data are consistent with the hypothesis that TEs can serve as a driving force for the evolution of some MIRNAs, where co-opting of DICER-LIKE1/4 processing and integration into AGO1 could exapt transcribed TE-associated hairpins into typical miRNA pathways.


Asunto(s)
Elementos Transponibles de ADN/genética , MicroARNs/química , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Oryza/genética , ARN Interferente Pequeño/metabolismo , Emparejamiento Base/genética , Secuencia de Bases , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , MicroARNs/genética , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Estabilidad del ARN/genética , Alineación de Secuencia
11.
Front Plant Sci ; 14: 1278320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023835

RESUMEN

In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.

12.
Plant Genome ; 16(3): e20350, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37351954

RESUMEN

MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.


Asunto(s)
MicroARNs , MicroARNs/genética , Arachis/genética , Sequías , Respuesta al Choque Térmico , ARN Mensajero/metabolismo
13.
Heliyon ; 9(3): e14528, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967958

RESUMEN

Grapevine red blotch virus (GRBV) is the causative agent of grapevine red blotch disease (GRBD) which is one of the major threats faced by grapevine industry in the United States. Since its initial identification in 2011, the disease has rapidly spread in the major US grape-growing regions of the Pacific Northwest, causing major economic impacts. Geminiviruses, the largest family of plant viruses, can induce and be targeted by host post-transcriptional gene-silencing (PTGS) anti-viral mechanisms. As a counter-defense mechanism, viruses have evolved viral silencing suppressor proteins to combat PTGS mechanisms and establish a successful infection in host plants. Here we provide characterization of two ORFs of GRBV, C2 and V2 as viral silencing suppressors. In Nicotiana benthamiana line 16c GFP marker plants, synergism or additive effects of C2 and V2 suppressors was observed at the mRNA level when they are expressed together transiently. Additionally, we showed there is no evidence by yeast two-hybrid of self-interaction (dimerization) of C2 or V2 proteins, and no evidence of physical interaction between these two suppressors.

14.
Plant Mol Biol ; 80(1): 117-29, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21533841

RESUMEN

miR828 in Arabidopsis triggers the cleavage of Trans-Acting SiRNA Gene 4 (TAS4) transcripts and production of small interfering RNAs (ta-siRNAs). One siRNA, TAS4-siRNA81(-), targets a set of MYB transcription factors including PAP1, PAP2, and MYB113 which regulate the anthocyanin biosynthesis pathway. Interestingly, miR828 also targets MYB113, suggesting a close relationship between these MYBs, miR828, and TAS4, but their evolutionary origins are unknown. We found that PAP1, PAP2, and TAS4 expression is induced specifically by exogenous treatment with sucrose and glucose in seedlings. The induction is attenuated in abscisic acid (ABA) pathway mutants, especially in abi3-1 and abi5-1 for PAP1 or PAP2, while no such effect is observed for TAS4. PAP1 is under regulation by TAS4, demonstrated by the accumulation of PAP1 transcripts and anthocyanin in ta-siRNA biogenesis pathway mutants. TAS4-siR81(-) expression is induced by physiological concentrations of Suc and Glc and in pap1-D, an activation-tagged line, indicating a feedback regulatory loop exists between PAP1 and TAS4. Bioinformatic analysis revealed MIR828 homologues in dicots and gymnosperms, but only in one basal monocot, whereas TAS4 is only found in dicots. Consistent with this observation, PAP1, PAP2, and MYB113 dicot paralogs show peptide and nucleotide footprints for the TAS4-siR81(-) binding site, providing evidence for purifying selection in contrast to monocots. Extended sequence similarities between MIR828, MYBs, and TAS4 support an inverted duplication model for the evolution of MIR828 from an ancestral gymnosperm MYB gene and subsequent formation of TAS4 by duplication of the miR828* arm. We obtained evidence by modified 5'-RACE for a MYB mRNA cleavage product guided by miR828 in Pinus resinosa. Taken together, our results suggest that regulation of anthocyanin biosynthesis by TAS4 and miR828 in higher plants is evolutionarily significant and consistent with the evolution of TAS4 since the dicot-monocot divergence.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbohidratos/farmacología , MicroARNs/genética , ARN de Planta/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Retroalimentación Fisiológica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Pinus/genética , Pinus/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Sacarosa/farmacología , Taxus/genética , Taxus/metabolismo , Factores de Transcripción/metabolismo
15.
PLoS Genet ; 5(4): e1000457, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19381263

RESUMEN

Antisense transcription is a pervasive phenomenon, but its source and functional significance is largely unknown. We took an expression-based approach to explore microRNA (miRNA)-related antisense transcription by computational analyses of published whole-genome tiling microarray transcriptome and deep sequencing small RNA (smRNA) data. Statistical support for greater abundance of antisense transcription signatures and smRNAs was observed for miRNA targets than for paralogous genes with no miRNA cleavage site. Antisense smRNAs were also found associated with MIRNA genes. This suggests that miRNA-associated "transitivity" (production of small interfering RNAs through antisense transcription) is more common than previously reported. High-resolution (3 nt) custom tiling microarray transcriptome analysis was performed with probes 400 bp 5' upstream and 3' downstream of the miRNA cleavage sites (direction relative to the mRNA) for 22 select miRNA target genes. We hybridized RNAs labeled from the smRNA pathway mutants, including hen1-1, dcl1-7, hyl1-2, rdr6-15, and sgs3-14. Results showed that antisense transcripts associated with miRNA targets were mainly elevated in hen1-1 and sgs3-14 to a lesser extent, and somewhat reduced in dcl11-7, hyl11-2, or rdr6-15 mutants. This was corroborated by semi-quantitative reverse transcription PCR; however, a direct correlation of antisense transcript abundance in MIR164 gene knockouts was not observed. Our overall analysis reveals a more widespread role for miRNA-associated transitivity with implications for functions of antisense transcription in gene regulation. HEN1 and SGS3 may be links for miRNA target entry into different RNA processing pathways.


Asunto(s)
Arabidopsis/genética , MicroARNs/genética , ARN sin Sentido/genética , ARN Mensajero/genética , Transcripción Genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
16.
Biomaterials ; 289: 121782, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099713

RESUMEN

Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Acetilcisteína , Animales , Proteínas Sanguíneas , Bovinos , Etanol/farmacología , Glutaral , Productos Finales de Glicación Avanzada , Piridoxamina , Ratas
17.
Materials (Basel) ; 14(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072337

RESUMEN

Mechanical properties of powder bed fusion processed unalloyed copper are reported majorly in the as-fabricated condition, and the effect of post-processes, common to additive manufacturing, is not well documented. In this study, mechanical properties of unalloyed copper processed by electron beam powder bed fusion are characterized via room temperature quasi-static uniaxial tensile test and Vickers microhardness. Tensile samples were extracted both perpendicular and parallel to the build direction and assigned to three different conditions: as-fabricated, hot isostatic pressing (HIP), and vacuum annealing. In the as-fabricated condition, the highest UTS and lowest elongation were obtained in the samples oriented perpendicular to the build direction. These were observed to have clear trends between sample orientation caused primarily by the interdependencies between the epitaxial columnar grain morphology and dislocation movement during the tensile test. Texture was insignificant in the as-fabricated condition, and its effect on the mechanical properties was outweighed by the orientation anisotropy. The fractographs revealed a ductile mode of failure with varying dimple sizes where more shallow and finely spaced dimples were observed in the samples oriented perpendicular to the build direction. EDS maps reveal that grain boundary oxides coalesce and grow in HIP and vacuum-annealed specimens which are seen inside the ductile dimples and contribute to their increased ductility. Overall, for the post-process parameters chosen in this study, HIP was observed to slightly increase the sample's density while vacuum annealing reduced the oxygen content in the specimens.

18.
Materials (Basel) ; 14(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34639939

RESUMEN

Niobium-based tungsten alloys are desirable for high-temperature structural applications yet are restricted in practice by limited room-temperature ductility and fabricability. Powder bed fusion additive manufacturing is one technology that could be leveraged to process alloys with limited ductility, without the need for pre-alloying. A custom electron beam powder bed fusion machine was used to demonstrate the processability of blended Nb-1Zr, Nb-10W-1Zr-0.1C, and Nb-20W-1Zr-0.1C powders, with resulting solid optical densities of 99+%. Ultimately, post-processing heat treatments were required to increase tungsten diffusion in niobium, as well as to attain satisfactory mechanical properties.

19.
Acta Biomater ; 123: 275-285, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33444798

RESUMEN

Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.


Asunto(s)
Prótesis Valvulares Cardíacas , Animales , Bovinos , Colágeno , Glucosa/farmacología , Productos Finales de Glicación Avanzada , Glioxal , Xenoinjertos , Albúmina Sérica , Albúmina Sérica Bovina , Porcinos
20.
F1000Res ; 9: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32399197

RESUMEN

Chen et al. ( Nature Genet. 51: 1549-1558; Oct. 2019) sequenced Ananas comosus var. bracteatus accession CB5, cultivated for its bright pink-to-red colored fruit, and yellow-fleshed A. comosus accession F153, reporting an improved F153 reference assembly while annotating MICRORNA (MIRNA) loci and gene family expressions relevant to lignin and anthocyanin biosynthesis. An independent article (Xiong et al.Sci. Rep. 8: 1947; 2018) reported var. bracteatus MIRNAs but not MIR828, a negative regulator of anthocyanin and polyphenolics biosynthesis by targeting MYB transcription factors associated with UV light- and sugar-signaling in dicots. MIR828 has been reported in gymnosperms, Amborella (sister to flowering plants), and basal monocot orders Liliales, Asparagales, Zingiberales, Arecales, but not in the Poales, a sister order comprising grasses and ~3,000 species of bromeliads including pineapple. Here I show MIR828 exists in pineapple and directs post-transcriptional gene silencing of mRNAs encoding MYB family members with inferred function to regulate the conspicuous red fruit trait in var. bracteatus. MIR828 plesiomorphy (an ancient basal trait) may shed light on monocot apomorphic fruit development, postulated for 21 monocot families with fleshy fruits as due to homoplasy/convergence driven by tropical climate and/or enticements to vertebrate endozoic seed dispersers.


Asunto(s)
Ananas , Frutas/crecimiento & desarrollo , MicroARNs , ARN de Planta/genética , Ananas/genética , Ananas/crecimiento & desarrollo , Secuencia de Bases , Frutas/genética , MicroARNs/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA