Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am Nat ; 180(6): 777-90, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23149402

RESUMEN

Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important subunits of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.


Asunto(s)
Aves/anatomía & histología , Aves/fisiología , Tamaño Corporal , Conducta Alimentaria , Animales , Conducta Competitiva , Ecosistema , Modelos Biológicos , Conducta Social
2.
J Wildl Dis ; 44(2): 446-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18436677

RESUMEN

Intensity of hematozoan infection is infrequently quantified because accurate calculations require visual counts of parasites relative to a large number of erythrocytes. Manual quantification of erythrocytes can be circumvented by using ImageJ software (developed by the National Institutes of Health) to count erythrocyte nuclei from digital images. Here we use the ratio of microscope erythrocyte counts to digital image erythrocyte counts (field:image ratio) to extrapolate erythrocyte counts from smaller digital images to the microscope's larger field of view. Field:image ratios were consistently calculated from 10 slides (resampling P = 0.049) and used to rapidly estimate intensity of infection within 50,000 or more erythrocytes. Intensity of hematozoan infection calculated from manual quantification of 2,000 erythrocytes was significantly lower (0.46 times) than intensity calculated from digital quantification of 50,000 erythrocytes (bootstrap P = 0.02). We contend that digital quantification of hematozoan infection offers a rapid and precise method to quantify infections of low to moderate intensity.


Asunto(s)
Apicomplexa , Enfermedades de las Aves/sangre , Eritrocitos/parasitología , Procesamiento de Imagen Asistido por Computador , Parasitemia/veterinaria , Animales , Enfermedades de las Aves/diagnóstico , Aves , Recuento de Eritrocitos/veterinaria , Eritrocitos/ultraestructura , Microscopía/veterinaria , Parasitemia/sangre , Parasitemia/diagnóstico , Infecciones Protozoarias en Animales/sangre , Infecciones Protozoarias en Animales/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA