Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chemistry ; 29(60): e202302154, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37522257

RESUMEN

Boosted by the emerging need for highly integrated gas sensors in the internet of things (IoT) ecosystems, electronic noses (e-noses) are gaining interest for the detection of specific molecules over a background of interfering gases. The sensing of nitrogen dioxide is particularly relevant for applications in environmental monitoring and precision medicine. Here we present an easy and efficient functionalization procedure to covalently modify graphene layers, taking advantage of diazonium chemistry. Separate graphene layers were functionalized with one of three different aryl rings: 4-nitrophenyl, 4-carboxyphenyl and 4-bromophenyl. The distinct modified graphene layers were assembled with a pristine layer into an e-nose for NO2 discrimination. A remarkable sensitivity to NO2 was demonstrated through exposure to gaseous solutions with NO2 concentrations in the 1-10 ppm range at room temperature. Then, the discrimination capability of the sensor array was tested by carrying out exposure to several interfering gases and analyzing the data through multivariate statistical analysis. This analysis showed that the e-nose can discriminate NO2 among all the interfering gases in a two-dimensional principal component analysis space. Finally, the e-nose was trained to accurately recognize NO2 contributions with a linear discriminant analysis approach, thus providing a metric for discrimination assessment with a prediction accuracy above 95 %.

2.
Molecules ; 26(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477446

RESUMEN

The increasing demand for raising the reliability of electronic contacts has led to the development of methods that protect metal surfaces against atmospheric corrosion agents. This severe problem implies an important economic cost annually but small amounts of corrosion inhibitors can control, decrease or avoid reactions between a metal and its environment. In this regard, surfactant inhibitors have displayed many advantages such as low price, easy fabrication, low toxicity and high inhibition efficiency. For this reason, in this article, the spectroelectrochemical behavior of polycrystalline gold electrode modified by reverse micelles (water/polyethyleneglycol-dodecylether (BRIJ 30)/n-heptane) is investigated by atomic force microscopy (AFM), potentiodynamic methods and electrochemical impedance spectroscopy (EIS). Main results indicate a strong adsorption of a monolayer of micelles on the gold substrate in which electron tunneling conduction is still possible. Therefore, this method of increasing the corrosion resistance of gold contacts is usable only in conditions of long-term storage but not in the operation of devices with such contacts. In this regard, the micelle coating must be removed from the surface of the gold contacts before use. Finally, the aim of the present work is to understand the reactions occurring at the surfactant/metal interface, which may help to improve the fabrication of novel electrodes.


Asunto(s)
Técnicas Biosensibles/métodos , Electroquímica , Electrodos , Oro/química , Micelas , Adsorción , Técnicas Electroquímicas , Propiedades de Superficie
3.
Chemphyschem ; 18(7): 804-811, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28067985

RESUMEN

The dynamics of the self-assembly process of thiol molecules on Au(111) is affected by the interplay between molecule-substrate and molecule-molecule interactions. Therefore, it is interesting to explore the effect of a second anchor to the gold surface, in addition to the S atom, on both the order and the feasibility of phase transitions in self-assembled monolayers. To assess the role of an additional O anchor, we have compared the adsorption of two mercaptobenzoic acid isomers, 2-mercaptobenzoic acid (2-MBA) and 4-mercaptobenzoic acid (4-MBA), on Au(111). Results from scanning tunneling microscopy, X-ray photoelectron spectroscopy, electrochemical techniques, and density functional theory calculations show that the additional O anchor in 2-MBA hinders surface mobility, reducing domain size and impeding the molecular reorganization involved in phase transition to denser phases on the Au(111) substrates. This knowledge can help to predict the range order and molecular density of the thiol SAM depending on the chemical structure of the adsorbate.

4.
Small Methods ; 8(1): e2300776, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37806774

RESUMEN

MXenes are electrically conductive 2D transition metal carbides/nitrides obtained by the etching of nanolaminated MAX phase compounds, followed by exfoliation to single- or few-layered nanosheets. The mainstream chemical etching processes have evolved from pure hydrofluoric acid (HF) etching into the innovative "minimally intensive layer delamination" (MILD) route. Despite their current popularity and remarkable application potential, the scalability of MILD-produced MXenes remains unproven, excluding MXenes from industrial applications. This work proposes a "next-generation MILD" (NGMILD) synthesis protocol for phase-pure, colloidally stable MXenes that withstand long periods of dry storage. NGMILD incorporates the synergistic effects of a secondary salt, a richer lithium (Li) environment, and iterative alcohol-based washing to achieve high-purity MXenes, while improving etching efficiency, intercalation, and shelf life. Moreover, NGMILD comprises a sulfuric acid (H2 SO4 ) post-treatment for the selective removal of the Li3 AlF6 impurity that commonly persists in MILD-produced MXenes. This work demonstrates the upscaled NGMILD synthesis of (50 g) phase-pure Ti3 C2 Tz MXene clays with high extraction yields (>22%) of supernatant dispersions. Finally, NGMILD-produced MXene clays dry-stored for six months under ambient conditions experience minimal degradation, while retaining excellent redispersibility. Overall, the NGMILD protocol is a leap forward toward the industrial production of MXenes and their subsequent market deployment.

5.
Nanoscale ; 16(7): 3749-3754, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38298095

RESUMEN

Molecular functionalization of MoS2 has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS2, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.

6.
Nanoscale ; 15(24): 10295-10305, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37272661

RESUMEN

Chemical patterning surfaces is relevant in several different domains of science and technology with exciting possibilities in electronics, catalysis, sensing, and photonics. Here, we present a novel strategy for chemical patterning of graphite using a combination of covalent and non-covalent approaches. Building on our previous work, where self-assembled monolayers of linear alkanes were used as sacrificial masks for directing the covalent anchoring of aryl groups to the graphite surface in sub-10 nm arrays, we present a modified design of a template alkane with alkoxy terminal groups which allowed better pattern transfer fidelity in comparison to simple linear alkanes. We also explored the use of chronoamperometry (CA) instead of previously used cyclic voltammetry (CV) for the functionalization process, which enabled patterning of the graphite surface at two-different length scales: few hundred nanometer circular patterns interspersed with sub-10 nm linear arrays. The covalent chemical patterning process has been studied in detail using CV and CA measurements whereas the patterned substrates have been thoroughly characterized using Raman spectroscopy, scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). Based on the comparison between the pattern transfer fidelity of previously studied alkanes and newly synthesized alkoxy alkane, we discuss plausible molecular mechanism of pattern transfer.


Asunto(s)
Grafito , Grafito/química , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Alcanos/química
7.
ACS Nano ; 15(6): 10618-10627, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34047547

RESUMEN

The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially resolved multicomponent covalent chemical patterning of single layer graphene using a facile and efficient method. Three different functional groups could be covalently attached to the basal plane in dense, well-defined patterns using a combination of lithography and a self-limiting variant of diazonium chemistry requiring no need for graphene activation. The layer thickness of the covalent films could be controlled down to 1 nm. This work provides a solid foundation for the fabrication of chemically patterned multifunctional graphene interfaces for device applications.

8.
Nanoscale ; 13(28): 12327-12341, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254598

RESUMEN

The integration of graphene, and more broadly two-dimensional materials, into devices and hybrid materials often requires the deposition of thin films on their usually inert surface. As a result, strategies for the introduction of surface reactive sites have been developed but currently pose a dilemma between robustness and preservation of the graphene properties. A method is reported here for covalently modifying graphitic surfaces, introducing functional groups that act as reactive sites for the growth of high quality dielectric layers. Aryl diazonium species containing tri-methoxy groups are covalently bonded (grafted) to highly oriented pyrolytic graphite (HOPG) and graphene, acting as seeding species for atomic layer deposition (ALD) of Al2O3, a high-κ dielectric material. A smooth and uniform dielectric film growth is confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurements. Raman spectroscopy showed that the aryl groups gradually detach from the graphitic surface during the Al2O3 ALD process at 150 °C, with the surface reverting back to the original sp2-hybridized state and without damaging the dielectric layer. Thus, the grafted aryl groups can act as a sacrificial seeding layer after healing the defects of the graphitic surface with annealing treatment.

9.
Nanoscale ; 12(36): 18782-18789, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32970069

RESUMEN

The chemistry of carbon surfaces has regained traction in recent years in view of its applicability towards covalent modification of a variety of (2D) materials. A general requisite is the formation of a dense and well-defined monolayer of aryl groups covalently bound to the surface. Given the use of reactive chemistries however, it is often not easy to achieve precise control over the monolayer growth while maintaining high grafting densities. Here we present a straightforward experimental protocol for the fabrication of well-defined covalent monolayers onto the surface of graphite. Using a combination of surface analytical tools, we demonstrate that the ascorbic acid mediated dediazoniation of aryldiazonium salts leads to self-limiting growth of monolayers with high grafting densities. The aryl radicals preferentially attach to the basal plane of the substrate and once the surface is covered with a covalent monolayer, the surface reaction does not proceed further to an appreciable extent. The layer thickness of the covalent films was measured using atomic force microscopy whereas the grafting efficiencies were assessed using Raman spectroscopy. The chemical composition of the grafted films was studied using X-ray photoelectron spectroscopy whereas scanning tunneling microscopy provided nanometer scale insight into the structure of the covalent films. Mechanistic aspects of the process are also discussed. The self-terminating chemistry described here is a new addition to the synthetic armory for covalent modification of materials and sets a strong foundation for achieving precise nanoscale control over the covalent functionalization process.

10.
Sci Rep ; 9(1): 14298, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586105

RESUMEN

The hydrocoral Millepora alcicornis, known as fire coral, biosynthesize protein toxins with phospholipase A2 (PLA2) activity as a main defense mechanism; proteins that rapidly catalyse the hydrolysis at the sn-2 position of phosphatidylcholine-type phospholipids of cellular membranes. This hydrolysis mechanism triggers a structural damage in the outer leaflet of the red blood cells (RBC) membrane, by generating pores in the lipid bilayer that leads to a depletion of the cellular content of the damaged cell. A secondary mechanism, tentatively caused by pore-forming proteins toxins (PFTs), has been observed. The use of atomic force microscopy (AFM) has allowed to visualize the evolution of damages produced on the surface of the cells at the nanoscale level along the time.


Asunto(s)
Membrana Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Hidrozoos/química , Toxinas Marinas/toxicidad , Fosfatidilcolinas/metabolismo , Fosfolipasas A2/toxicidad , Animales , Membrana Celular/ultraestructura , Eritrocitos/ultraestructura , Ratas Sprague-Dawley
11.
ACS Appl Mater Interfaces ; 10(28): 23657-23666, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29927235

RESUMEN

The increasing incidence of infections in implantable devices has encouraged the search for biocompatible antimicrobial surfaces. To inhibit the bacterial adhesion and proliferation on biomaterials, several surface functionalization strategies have been developed. However, most of these strategies lead to bacteriostatic effect and only few of these are able to reach the bactericidal condition. In this work, bactericidal surfaces were designed through the functionalization of titanium surfaces with poly-l-lysine (PLL) as the mediator for the incorporation of antimicrobial silver nanoparticles (AgNPs). This functionalization influences the adsorption of the particles on the substrate impeding the agglomeration observed when bare titanium surfaces are used, leading to a homogeneous distribution of AgNPs on the surfaces. The antimicrobial activity of this surface has been tested against two different strains, namely, Staphylococcus aureus and Pseudomonas aeruginosa. For both strains and different AgNPs sizes, the surface modified with PLL and AgNPs shows a much enhanced antimicrobial activity in comparison with AgNPs deposited on bare titanium. This enhanced antibacterial activity is high enough to reach bactericidal effect, a condition hard to achieve in antimicrobial surfaces. Importantly, the designed surfaces are able to decrease the bacterial viability more than 5 orders with respect to the initial bacterial inoculum. That means that a relative low load of AgNPs on the PLL-modified titanium surfaces reaches 99.999% bacterial death after 24 h. The results of the present study are important to avoid infections in indwelling materials by reinforcing the preventive antibiotic therapy usually dosed throughout the surgical procedure and during the postoperative period.


Asunto(s)
Polilisina/química , Antibacterianos , Antiinfecciosos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA