Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Inorg Chem ; 62(50): 20593-20607, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36662237

RESUMEN

H2dedpa-N,N'-pram (H2L1), a new chelator derived from the hexadentate ligand 1,2-bis[[(6-carboxypyridin-2-yl)methyl]amino]ethane (H2dedpa), which incorporates 3-propylamine chains anchored to the secondary amines of the ethylenediamine core of the latter, has emerged as a very promising scaffold for preparing 68Ga- and 64Cu-based positron emission tomography probes. This new platform is cost-effective and easy to prepare, and the two pendant primary amines make it versatile for the preparation of bifunctional chelators by conjugation and/or click chemistry. Reported herein, we have also included the related H2dedpa-N,N'-prpta (H2L2) platform as a simple structural model for its conjugated systems. X-ray crystallography confirmed that the N4O2 coordination sphere provided by the dedpa2- core is maintained at both Ga(III) and Cu(II). The complex formation equilibria were deeply investigated by a thorough multitechnique approach with potentiometric, NMR spectrometric, and UV-vis spectrophotometric titrations, revealing effective chelation. The thermodynamic stability of the Ga(III) complexes at physiological relevant conditions is slightly higher than that of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the common and clinically approved chelator used in the clinic [pGa = 19.5 (dedpa-N,N'-pram) and 20.8 (dedpa-N,N'-prpta) versus 18.5 (DOTA) at identical conditions], and significantly higher for the Cu(II) complexes [pCu = 21.96 (dedpa-N,N'-pram) and 22.8 (dedpa-N,N'-prpta) versus 16.2 (DOTA)], which are even more stable than that of the parent ligand dedpa2- (pCu = 18.5) and that of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) (pCu = 18.5). This high stability found for Cu(II) complexes is related to the conversion of the secondary amines of the ethylenediamine core of dedpa2- into tertiary amines, whereby the architecture of the new H2L1 chelator is doubly optimal in the case of this metal ion: high accessibility of the primary amine groups and their incorporation via the secondary amines, which contributes to a significant increase in the stability of the metal complex. Quantitative labeling of both chelators with both radionuclides ([68Ga]Ga3+ and [64Cu]Cu2+) was observed within 15 min at room temperature with concentrations as low as 10-5 M. Furthermore, serum stability studies confirmed a high radiochemical in vitro stability of all systems and therefore confirmed H2L1 as a promising and versatile chelator for further radiopharmaceutical in vivo studies.


Asunto(s)
Radioisótopos de Galio , Tomografía de Emisión de Positrones , Radioisótopos de Galio/química , Ligandos , Tomografía de Emisión de Positrones/métodos , Quelantes/química , Radiofármacos/química , Aminas , Etilenodiaminas
2.
Inorg Chem ; 59(20): 15120-15134, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33000942

RESUMEN

The dianionic aza crown ether-dtc N,N'-bis(dithiocarbamate)-1,10-diaza-18-crown-6 (L2-) is a versatile ligand capable of yielding binuclear complexes with group 10 elements, also known as Ni-triade, [µ-(κ2-S,-S'-L)M2(PPh3)4]Cl2 (M = Pd (1), Pt (2)), [µ-(κ2-S,-S'-L)M2(PPh3)4](BPh4)2 (M = Pd (3), Pt (4)), and µ-(κ-S,-S'-L)Ni2(PPh3)2Cl2 (5), and has proven to be an excellent option to the design of metal-based drugs able to provide multiple response to cell resistance. Palladium and platinum complexes, 1 and 2, were tested for cytotoxicity in the human cervix carcinoma cell line HeLa-229, the human ovarian carcinoma cell line A2780, and the cisplatin-resistant mutant A2780cis, finding significant activity toward all three cancer cell lines, with low micromolar IC50 values, comparable to cisplatin. Markedly, against the cisplatin resistant cell line A2780cis, compound 2 exhibits better cytotoxic activity than the clinical drug (IC50 = 2.3 ± 0.2 µM for 2 versus 3.6 ± 0.5 µM for cisplatin). Moreover, an enhancement of the antitumor response is achieved when adding an equimolar amount of alkali metal chloride (NaCl or KCl) to the medium, for instance, testing compound 1 against the cisplatin-resistant A2780cis cells, the IC50 decreases from 9.3 ± 0.4 to 7.4 ± 0.3 and 5.4 ± 0.1 µM, respectively, after addition of the salt solution. For the platinum derivative 2, the IC50 improves by ca. 40% reaching 1.3 ± 0.1 µM when potassium chloride is added. Likewise, the resistant factor found for 2 (RF = 1) confirms that this complex circumvents cisplatin-resistance in A2780cis and is improved with the addition of potassium chloride (RF = 0.65). The presence of the aza crown ether moiety as linker in the systems studied herein is a key point since, in addition to allowing and facilitating interaction with alkali metal ions, this unit is flexible enough to adapt to a variety of environments, as confirmed by the X-ray crystal structures described, where different conformations and ways to fold in are found. In order to gain insight into the electronic and structural facts involved in the interaction of complex 2 with the alkali metal ions, a DFT study was performed, and the description of the molecular electrostatic potentials (MEPs) is also presented.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Aza/farmacología , Complejos de Coordinación/farmacología , Éteres Corona/farmacología , Tiocarbamatos/farmacología , Antineoplásicos/síntesis química , Compuestos Aza/síntesis química , Complejos de Coordinación/síntesis química , Éteres Corona/síntesis química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Paladio/química , Platino (Metal)/química , Tiocarbamatos/síntesis química
3.
Chemistry ; 23(5): 1110-1117, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-27859727

RESUMEN

Two macrocyclic ligands containing a cyclen unit, a methyl group, a picolinate arm, and two acetate pendant arms attached to two nitrogen atoms of the macrocycle either in trans (1,7-H3 Medo2 ampa = 2,2'-(7-((6-carboxypyridin-2-yl)methyl)-10-methyl-1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid) or in cis (1,4-H3 Medo2 ampa) positions are reported. These ligands provide eight-coordination to the Ln3+ ions, leaving a coordination position available for a water molecule that occupies a capping position in the twisted square antiprismatic polyhedron (1,4-H3 Medo2 ampa) or one of the positions of the square antiprism (1,7-H3 Medo2 ampa). The charge neutral [Gd(1,7-Medo2 ampa)] complex presents an unprecedentedly low water-exchange rate (kex298 =8.8×103  s-1 ), whereas water exchange in [Gd(1,4-Medo2 ampa)] is three orders of magnitude faster (kex298 =6.6×106  s-1 ). These results showcase the labile capping bond phenomenon: A ligand occupying a capping position is hindered by the environment and thus is intrinsically labile.

4.
Inorg Chem ; 55(5): 2227-39, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26878271

RESUMEN

The coordination properties toward the lanthanide ions of two macrocyclic ligands based on a cyclam platform containing picolinate pendant arms have been investigated. The synthesis of the ligands was achieved by using the well-known bis-aminal chemistry. One of the cyclam derivatives (cb-tedpa(2-)) is reinforced with a cross-bridge unit, which results in exceptionally inert [Ln(cb-tedpa)](+) complexes. The X-ray structures of the [La(cb-tedpa)Cl], [Gd(cb-tedpa)](+), and [Lu(Me2tedpa)](+) complexes indicate octadentate binding of the ligands to the metal ions. The analysis of the Yb(3+)-induced shifts in [Yb(Me2tedpa)](+) indicates that this complex presents a solution structure very similar to that observed in the solid state for the Lu(3+) analogue. The X-ray structures of [La(H2Me2tedpa)2](3+) and [Yb(H2Me2tedpa)2](3+) complexes confirm the exocyclic coordination of the metal ions, which gives rise to coordination polymers with the metal coordination environment being fulfilled by oxygen atoms of the picolinate groups and water molecules. The X-ray structure of [Gd(Hcb-tedpa)2](+) also indicates exocyclic coordination that in this case results in a discrete structure with an eight-coordinated metal ion. The nonreinforced complexes [Ln(Me2tedpa)](+) were prepared and isolated as chloride salts in nonaqueous media. However, these complexes were found to undergo dissociation in aqueous solution, except in the case of the complexes with the smallest Ln(3+) ions (Ln(3+) = Yb(3+) and Lu(3+)). A DFT investigation shows that the increased stability of the [Ln(Me2tedpa)](+) complexes in solution across the lanthanide series is the result of an increased binding energy of the ligand due to the increased charge density of the Ln(3+) ion.

5.
Inorg Chem ; 54(10): 4940-52, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25942280

RESUMEN

We report two macrocyclic ligands containing a 1,10-diaza-18-crown-6 fragment functionalized with either two picolinamide pendant arms (bpa18c6) or one picolinamide and one picolinate arm (ppa18c6(-)). The X-ray structure of [La(ppa18c6)(H2O)](2+) shows that the ligand binds to the metal ion using the six donor atoms of the crown moiety and the four donor atoms of the pendant arms, 11-coordination being completed by the presence of a coordinated water molecule. The X-ray structure of the [Sr(bpa18c6)(H2O)](2+) was also investigated due to the very similar ionic radii of Sr(2+) and Eu(2+). The structure of this complex is very similar to that of [La(ppa18c6)(H2O)](2+), with the metal ion being 11-coordinated. Potentiometric measurements were used to determine the stability constants of the complexes formed with La(3+) and Eu(3+). Both ligands present a very high selectivity for the large La(3+) ion over the smaller Eu(3+), with a size-discrimination ability that exceeds that of the analogous ligand containing two picolinate pendant arms reported previously (bp18c6(2-)). DFT calculations using the TPSSh functional and the large-core pseudopotential approximation provided stability trends in good agreement with the experimental values, indicating that charge neutral ligands derived from 1,10-diaza-18-crown-6 enhance the selectivity of the ligand for the large Ln(3+) ions. Cyclic voltammetry measurements show that the stabilization of Eu(2+) by these ligands follows the sequence bp18c6(2-) < ppa18c6(-) < bpa18c6 with half-wave potentials of -753 mV (bp18c6(2-)), -610 mV (ppa18c6(-)), and -453 mV (bpa18c6) versus Ag/AgCl. These values reveal that the complex of bpa18c6 possesses higher stability against oxidation than the aquated ion, for which an E1/2 value of -585 mV has been measured.


Asunto(s)
Compuestos Aza/química , Complejos de Coordinación/química , Éteres Corona/química , Europio/química , Agua/química , Amidas/química , Compuestos Aza/síntesis química , Cationes Bivalentes , Complejos de Coordinación/síntesis química , Éteres Corona/síntesis química , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Conformación Molecular , Ácidos Picolínicos/química , Teoría Cuántica , Electricidad Estática
6.
Inorg Chem ; 54(19): 9576-87, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26397808

RESUMEN

We report a series of ligands containing pentadentate 6,6'-((methylazanediyl)bis(methylene))dipicolinic acid binding units that form mono- (H2dpama), di- (mX(H2dpama)2), and trinuclear (mX(H2dpama)3) complexes with Mn2+ containing two coordinated water molecules per metal ion, which results in pentagonal bipyramidal coordination around the metal ions. In contrast, the hexadentate ligand 6,6'-((ethane-1,2-diylbis(azanediyl))bis(methylene))dipicolinic acid (H2bcpe) forms a complex with distorted octahedral coordination around Mn2+ that lacks coordinated water molecules. The protonation constants of the ligands and the stability constants of the Mn2+, Cu2+, and Zn2+ complexes were determined using potentiometric and spectrophotometric titrations in 0.15 M NaCl. The pentadentate dpama2­ ligand and the di- and trinucleating mX(dpama)24­ and mX(dpama)36­ ligands provide metal complexes with stabilities that are very similar to that of the complex with the hexadentate ligand bcpe2­, with log ß101 values in the range 10.1­11.6. Cyclic voltammetry experiments on aqueous solutions of the [Mn(bcpe)] complex reveal a quasireversible system with a half-wave potential of +595 mV versus Ag/AgCl. However, [Mn(dpama)] did not suffer oxidation in the range 0.0­1.0 V, revealing a higher resistance toward oxidation. A detailed 1H NMRD and 17O NMR study provided insight into the parameters that govern the relaxivity for these systems. The exchange rate of the coordinated water molecules in [Mn(dpama)] is relatively fast, kex298 = (3.06 ± 0.16) × 108 s­1. The trinuclear [mX(Mn(dpama)(H2O)2)3] complex was found to bind human serum albumin with an association constant of 1286 ± 55 M­1 and a relaxivity of the adduct of 45.2 ± 0.6 mM­1 s­1 at 310 K and 20 MHz.

7.
J Am Chem Soc ; 136(52): 17954-7, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25495928

RESUMEN

Lanthanide(III) complexes of a cross-bridged cyclam derivative containing two picolinate pendant arms are kinetically inert in very harsh conditions such as 2 M HCl, with no dissociation being observed for at least 5 months. Importantly, the [Ln(dota)](-) complexes, which are recognized to be extremely inert, dissociate under these conditions with lifetimes in the range ca. 1 min to 12 h depending upon the Ln(3+) ion. X-ray diffraction studies reveal octadentate binding of the ligand to the metal ion in the [Eu(cb-tedpa)](+) complex, while (1)H and (13)C NMR experiments in D2O point to the presence of a single diastereoisomer in solution with a very rigid structure. The structure of the complexes in the solid state is retained in solution, as demonstrated by the analysis of the Yb(3+)-induced paramagnetic shifts.


Asunto(s)
Compuestos Heterocíclicos/química , Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular
8.
Chemistry ; 20(14): 3974-81, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24577810

RESUMEN

The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA(4-) (H4TETA=2,2',2'',2'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetic acid), BCAED(4-) (H4BCAED=2,2',2'',2'''-{[(1,4-diazepane-1,4-diyl)bis(ethane-2,1-diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C6(2-) (H2BP18C6=6,6'-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6-31G(d,p) level, and using a 46+4f(n) ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X-ray structures. The contractions of the Ln(3+) coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La(L)](n+/-)(sol)+Ln(3+)(sol)→[Ln(L)](n+/-)(sol)+La(3+)(sol). A parameterization of the Ln(3+) radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED(4-) complexes, increase smoothly for the TETA(4-) analogues, and decrease in the case of BP18C6(2-) complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Ligandos , Modelos Moleculares , Estructura Molecular
9.
Chemistry ; 20(52): 17300-5, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25382711

RESUMEN

Stable Mn(2+) mono- and binuclear complexes containing pentadentate 6,6'-((methylazanediyl)bis(methylene))dipicolinic acid coordinating units give remarkably high relaxivities due to the presence of two inner-sphere water molecules. The mononuclear derivative binds human serum albumin (HSA) with an association constant of 3372 M(-1), which results in the replacement of the coordinated water molecules by donor atoms of protein residues. The dinuclear analogue also binds HSA while leaving one of the Mn(2+) centres exposed to the solvent with two coordinated water molecules. Thus, this complex shows remarkably high relaxivities upon protein binding (39.0 mM(-1) s(-1) per Mn, at 20 MHz and 37 °C).


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Manganeso/química , Albúmina Sérica/química , Humanos , Imagen por Resonancia Magnética , Unión Proteica
10.
Inorg Chem ; 53(5): 2554-68, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24528471

RESUMEN

The ability of Cu(II) and Zn(II) complexes of the ditopic receptor H2L [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea] for anion recognition is reported. In the presence of weakly coordinating anions such as ClO4(-), the urea group binds to the metal ion (Cu(II) or Zn(II)) through one of its nitrogen atoms. The study of the interaction of the metal complexes with a variety of anions in DMSO shows that SO4(2-) and Cl(-) bind to the complexes through a cooperative binding involving simultaneous coordination to the metal ion and different hydrogen-bonding interactions with the urea moiety, depending on the shape and size of the anion. On the contrary, single crystal X-ray diffraction studies show that anions such as NO3(-) and PhCO2(-) form 1:2 complexes (metal/anion) where one of the anions coordinates to the metal center and the second one is involved in hydrogen-bonding interaction with the urea group, which is projected away from the metal ion. Spectrophotometric titrations performed for the Cu(II) complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2(-) ∼ Cl(-) (log K11 > 7) > NO2(-) > H2PO4(-) ∼ Br(-) > HSO4(-) > NO3(-) (log K11 < 2). In contrast to this, the free ligand gives much weaker interactions with these anions. In the presence of basic anions such as MeCO2(-) or F(-), competitive processes associated with the deprotonation of the coordinated N-H group of the urea moiety take place. Thus, N-coordination of the urea unit to the metal ion increases the acidity of one of its N-H groups. DFT calculations performed in DMSO solution are in agreement with both an anion-hydrogen bonding interaction and an anion-metal ion coordination collaborating in the stabilization of the metal salt complexes with tetrahedral anions.


Asunto(s)
Aniones/química , Cobre/química , Teoría Cuántica , Urea/química , Zinc/química , Complejos de Coordinación , Ligandos , Espectroscopía de Resonancia Magnética
11.
Inorg Chem ; 53(24): 12859-69, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25415841

RESUMEN

A series of transition metal complexes [ML(1)] (H2L(1) = 1,4,10-trioxa-7,13-diazacyclopentadecane-N,N'-diacetic acid, M = Co, Ni, Cu, or Zn) have been prepared and characterized. The X-ray structures of the [CoL(1)] and [CuL(1)] complexes reveal that the metal ions are seven-coordinated with a distorted pentagonal bipyramidal coordination. The five donor atoms of the macrocycle define the pentagonal plane of the bipyramid, while two oxygen atoms of the carboxylate groups coordinate apically. The [NiL(1)] complex presents a very distorted structure with long Ni-O distances involving two oxygen atoms of the crown moiety [2.544(3) Å]. This distortion is related to the Jahn-Teller effect that is expected to operate in d(8) pentagonal bipyramidal complexes. The spectroscopic characterization of the [ZnL(1)] and [CuL(1)] complexes using NMR and EPR and the theoretical calculation of the (13)C NMR shifts and g- and A-tensors using DFT confirm that these complexes retain the pentagonal bipyramidal coordination in aqueous solution. The stability trend of the [ML(1)] complexes (Co(2+) > Ni(2+) < Cu(2+) > Zn(2+)), which is in contradiction with the Irving-Williams order, has been analyzed using DFT calculations (TPSSh functional). The free energy values calculated in the gas phase for [CoL(1)](g) + [M(H2O)6](2+)(g) → [ML(1)](g) + [Co(H2O)6](2+)(g) (M = Ni, Cu, Zn) reproduce fairly well the stability trend observed experimentally, the agreement being improved significantly upon inclusion of solvent effects. Our results indicate that the pentagonal bipyramidal coordination is particularly unfavorable for Ni(2+), and thus preorganized ligands that favor this geometry such as L(1) are selective for Co(2+) over Ni(2+) cations.

12.
Inorg Chem ; 53(12): 6003-12, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24890863

RESUMEN

Complexation of the adjacent actinide ions americium(III) and curium(III) by the ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2bp18c6) in aqueous solution was studied to quantify and characterize its americium/curium selectivity. Liquid-liquid extraction and spectrophotometric titration indicated the presence of both fully deprotonated and monoprotonated complexes, An(bp18c6)(+) and An(Hbp18c6)(2+) (An = Am or Cm), at the acidities that would be encountered when treating nuclear wastes. The stability constants of the complexes in 1 M NaNO3 determined using competitive complexation were log ß101 = 15.49 ± 0.06 for Am and 14.88 ± 0.03 for Cm, indicating a reversal of the usual order of complex stability, where ligands bind the smaller Cm(III) ion more tightly than Am(III). The Am/Cm selectivity of bp18c6(2-) that is defined by the ratio of the Am and Cm stability constants (ß101 Am/ß101 Cm = 4.1) is the largest reported so far for binary An(III)-ligand complexes. Theoretical density functional theory calculations using the B3LYP functional suggest that the ligand's size-selectivity for larger 4f- and 5f-element cations arises from steric constraints in the crown ether ring. Enhanced 5f character in molecular orbitals involving actinide-nitrogen interactions is predicted to favor actinide(III) complexation by bp18c6(2-) over the complexation of similarly sized lanthanide(III) cations.

13.
Chemistry ; 19(35): 11696-706, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23846845

RESUMEN

Homodinuclear lanthanide complexes (Ln = La, Eu, Gd, Tb, Yb and Lu) derived from a bis-macrocyclic ligand featuring two 2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid chelating sites linked by a 2,6-bis(pyrazol-1-yl)pyridine spacer (H2L(3)) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes indicate the presence of one inner-sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (ϕ H2O = 0.01 for [Eu2(L(3))] and 0.50 for [Tb2(L(3))] in 0.01 M TRIS/HCl, pH 7.4; TRIS = tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L(3))] are characteristic of slowly tumbling systems, showing a low-field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous Gd(III) complex containing a 4,4'-dimethyl-2,2'-bipyridyl spacer ([Gd2(L(1))]). The relaxivity of [Gd2(L(3))] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM(-1) s(-1). The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L(1))] and [Gd2(L(3))], respectively. TEM images of [Gd2(L(3))] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.

14.
Chemistry ; 18(26): 8163-73, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22614945

RESUMEN

Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01 M Tris-HCl, pH 7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1) ms and ϕ(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1) the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2) marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3) unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu energy-transfer process. A mathematical model was developed to interpret the experimental data, leading to energy-transfer rates of 0.98 ms(-1) for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree-Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided Förster radii (R(0)) values of 8.1 Šfor the energy transfer from site I to site II, and 6.8 Šfor the reverse energy transfer. These results represent the first evidence of an intramolecular energy-transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution.


Asunto(s)
Europio/química , Elementos de la Serie de los Lantanoides/química , 2,2'-Dipiridil/química , Transferencia de Energía , Ligandos , Espectroscopía de Resonancia Magnética , Soluciones , Espectrofotometría Ultravioleta
15.
Chemphyschem ; 13(16): 3640-50, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-22927182

RESUMEN

Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero.


Asunto(s)
Medios de Contraste/química , Gadolinio DTPA/química , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos/química , Compuestos Organometálicos/química , Agua/química , Imagen por Resonancia Magnética , Modelos Moleculares
16.
Inorg Chem ; 51(24): 13419-29, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23215456

RESUMEN

Herein, we present a new approach that combines DFT calculations and the analysis of Tb(III)-induced (1)H NMR shifts to quantitatively and accurately account for the contact contribution to the paramagnetic shift in Ln(III) complexes. Geometry optimizations of different Gd(III) complexes with macrocyclic ligands were carried out using the hybrid meta-GGA TPSSh functional and a 46 + 4f(7) effective core potential (ECP) for Gd. The complexes investigated include [Ln(Me-DODPA)](+) (H(2)Me-DODPA = 6,6'-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid, [Ln(DOTA)(H(2)O)](-) (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), [Ln(DOTAM)(H(2)O)](3+) (DOTAM = 1,4,7,10- tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane), and related systems containing pyridyl units (Ln = Gd, Tb). Subsequent all-electron relativistic calculations based on the DKH2 approximation, or small-core ECP calculations, were used to compute the (1)H hyperfine coupling constants (HFCCs) at the ligand nuclei (A(iso) values). The calculated A(iso) values provided direct access to contact contributions to the (1)H NMR shifts of the corresponding Tb(III) complexes under the assumption that Gd and Tb complexes with a given ligand present similar HFCCs. These contact shifts were used to obtain the pseudocontact shifts, which encode structural information as they depend on the position of the nucleus with respect to the lanthanide ion. An excellent agreement was observed between the experimental and calculated pseudocontact shifts using the DFT-optimized geometries as structural models of the complexes in solution, which demonstrates that the computational approach used provides (i) good structural models for the complexes, (ii) accurate HFCCs at the ligand nuclei. The methodology presented in this work can be classified in the context of model-dependent methods, as it relies on the use of a specific molecular structure obtained from DFT calculations. Our results show that spin polarization effects dominate the (1)H A(iso) values. The X-ray crystal structures of [Ln(Me-DODPA)](PF(6))·2H(2)O (Ln = Eu or Lu) are also reported.


Asunto(s)
Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Compuestos Macrocíclicos/química , Espectroscopía de Resonancia Magnética , Teoría Cuántica , Ligandos , Estructura Molecular , Soluciones/química
17.
Inorg Chem ; 51(20): 10893-903, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23016509

RESUMEN

A new macrocyclic ligand, N,N'-bis[(6-carboxy-2-pyridyl)methyl]-2,11-diaza[3.3](2,6)pyridinophane (H(2)BPDPA), was prepared, and its coordination properties toward the Ln(III) ions were investigated. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that they contain one inner-sphere water molecule. The structure of the complexes in solution has been investigated by (1)H and (13)C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (B3LYP) level. The minimum-energy conformation calculated for the Yb(III) complex is in excellent agreement with the experimental structure in solution, as demonstrated by analysis of the Yb(III)-induced paramagnetic (1)H shifts. Nuclear magnetic relaxation dispersion (NMRD) profiles and (17)O NMR measurements recorded on solutions of the Gd(III) complex were used to determine the parameters governing the relaxivity. The results show that this system is endowed with a relatively fast water-exchange rate k(ex)(298) = 63 × 10(6) s(-1). Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. The stability constants, which fall within the range logK(LnL) = 12.5-14.2, point to a relatively low stability of the complexes primarily as a consequence of the low basicity of the ligand.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Ácidos Picolínicos/química , Piridinas/química , Ligandos , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Protones , Teoría Cuántica
18.
Inorg Chem ; 51(4): 2509-21, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22243216

RESUMEN

Two new macrocyclic ligands, 6,6'-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6'-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(­1).

19.
Inorg Chem ; 50(8): 3772-84, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21413756

RESUMEN

Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that these metal ions are exocyclically coordinated by the ligand, which explains the high Pb(II)/Cd(II) and Pb(II)/Zn(II) selectivities. Our receptor bp18c6(2-) shows promise for application in chelation treatment of metal intoxication by Pb(II) and (90)Sr(II).


Asunto(s)
Calcio/química , Plomo/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Estroncio/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Teoría Cuántica
20.
Inorg Chem ; 50(9): 4125-41, 2011 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-21456610

RESUMEN

In this contribution we present two ligands based on a do3a platform containing a picolinate group attached to the fourth nitrogen atom of the cyclen unit, which are designed for stable lanthanide complexation in aqueous solutions. Potentiometric measurements reveal that the thermodynamic stability of the complexes is very high (log K = 21.2-23.5), being comparable to that of the dota analogues. Luminescence lifetime measurements performed on solutions of the Eu(III) and Tb(III) complexes indicate that the complexes are nine coordinate with no inner-sphere water molecules. A combination of density functional theory (DFT) calculations and NMR measurements shows that for the complexes of the heaviest lanthanides there is a major isomer in solution consisting of the enantiomeric pair Λ(δδδδ) and Δ(λλλλ), which provides square antiprismatic coordination (SAP) around the metal ion. Analysis of the Yb(III)-induced paramagnetic shifts unambiguously confirms that these complexes have SAP coordination in aqueous solution. For the light lanthanide ions however both the SAP and twisted-square antiprismatic (TSAP) isomers are present in solution. Inversion of the cyclen ring appears to be the rate-determining step for the Λ(δδδδ) ↔ Δ(λλλλ) enantiomerization process observed in the Lu(III) complexes. The energy barriers obtained from NMR measurements for this dynamic process are in excellent agreement with those predicted by DFT calculations. The energy barriers calculated for the arm-rotation process are considerably lower than those obtained for the ring-inversion path. Kinetic studies show that replacement of an acetate arm of dota by a picolinate pendant results in a 3-fold increase in the formation rate of the corresponding Eu(III) complexes and a significant increase of the rates of acid-catalyzed dissociation of the complexes. However, these rates are 1-2 orders of magnitude lower than those of do3a analogues, which shows that the complexes reported herein are remarkably inert with respect to metal ion dissociation.


Asunto(s)
Diseño de Fármacos , Compuestos Heterocíclicos con 1 Anillo/química , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Compuestos Organometálicos/química , Ácidos Picolínicos/química , Absorción , Catálisis , Cinética , Ligandos , Sustancias Luminiscentes/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Protones , Teoría Cuántica , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA