Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 83(3): 404-415, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634677

RESUMEN

Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Poliadenilación , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética
2.
Mol Cell ; 83(24): 4461-4478.e13, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38029752

RESUMEN

Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estudio de Asociación del Genoma Completo , Transcripción Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Procesamiento de Término de ARN 3'/genética
3.
Mol Cell ; 82(13): 2490-2504.e12, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584695

RESUMEN

Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.


Asunto(s)
Precursores del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Escisión y Poliadenilación de ARNm , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Poliadenilación , Unión Proteica , Estructura Terciaria de Proteína , Precursores del ARN/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
4.
Genes Dev ; 35(21-22): 1510-1526, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34593603

RESUMEN

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3' end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3' end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3' end processing machinery are required to coordinate cleavage and polyadenylation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
5.
Mol Cell ; 63(3): 433-44, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477907

RESUMEN

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ingeniería de Proteínas , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Humanos , Modelos Moleculares , Mutación , Nucleosomas/enzimología , Nucleosomas/genética , Fosforilación , Regiones Promotoras Genéticas , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad del ARN/efectos de los fármacos , ARN de Hongos/efectos de los fármacos , ARN de Hongos/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Quinasa Activadora de Quinasas Ciclina-Dependientes
7.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819276

RESUMEN

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperazinas/farmacología , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sarcoma de Ewing/tratamiento farmacológico
8.
Nucleic Acids Res ; 46(21): 11528-11538, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30247719

RESUMEN

The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs.


Asunto(s)
Complejos Multiproteicos/metabolismo , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Inmunoprecipitación de Cromatina , Complejos Multiproteicos/genética , Subunidades de Proteína , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética
9.
J Biol Chem ; 287(11): 8541-51, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22235117

RESUMEN

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) serves an important role in coordinating stage-specific recruitment and release of cellular machines during transcription. Dynamic placement and removal of phosphorylation marks on different residues of a repeating heptapeptide (YSPTSPS) of the CTD underlies the engagement of relevant cellular machinery. Whereas sequential placement of phosphorylation marks is well explored, genome-wide engagement of phosphatases that remove these CTD marks is poorly understood. In particular, identifying the enzyme that erases phospho-Ser7 (Ser7-P) marks is especially important, because we find that substituting this residue with a glutamate, a phospho-mimic, is lethal. Our observations implicate Ssu72 as a Ser7-P phosphatase. We report that removal of all phospho-CTD marks during transcription termination is mechanistically coupled. An inability to remove these marks prevents Pol II from terminating efficiently and will likely impede subsequent assembly into the pre-initiation complex.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Mutación Missense , Fosfoproteínas Fosfatasas/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/genética
10.
Eukaryot Cell ; 11(4): 417-29, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22286094

RESUMEN

The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes. Sen1 and Nrd1 both interact directly with Nab3, as well as with the C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II. It has been proposed that Sen1, Nab3, and Nrd1 form a complex that associates with Rpb1 through an interaction between Nrd1 and the Ser5-phosphorylated (Ser5-P) CTD. To further study the relationship between the termination factors and Rpb1, we used two-hybrid analysis and immunoprecipitation to characterize sen1-R302W, a mutation that impairs an interaction between Sen1 and the Ser2-phosphorylated CTD. Chromatin immunoprecipitation indicates that the impairment of the interaction between Sen1 and Ser2-P causes the reduced occupancy of mutant Sen1 across the entire length of noncoding genes. For protein-coding genes, mutant Sen1 occupancy is reduced early and late in transcription but is similar to that of the wild type across most of the coding region. The combined data suggest a handoff model in which proteins differentially transfer from the Ser5- to the Ser2-phosphorylated CTD to promote the termination of noncoding transcripts or other cotranscriptional events for protein-coding genes.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/genética , ARN Helicasas/aislamiento & purificación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
11.
FEBS Open Bio ; 13(7): 1140-1153, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416579

RESUMEN

During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.


Asunto(s)
Poliadenilación , Proteínas de Saccharomyces cerevisiae , Animales , Poliadenilación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética
12.
Genet Res Int ; 2012: 347214, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567385

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.

13.
Nat Struct Mol Biol ; 17(9): 1154-61, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20802488

RESUMEN

Sequential modifications of the RNA polymerase II (Pol II) C-terminal domain (CTD) coordinate the stage-specific association and release of cellular machines during transcription. Here we examine the genome-wide distributions of the 'early' (phospho-Ser5 (Ser5-P)), 'mid' (Ser7-P) and 'late' (Ser2-P) CTD marks. We identify gene class-specific patterns and find widespread co-occurrence of the CTD marks. Contrary to its role in 3'-processing of noncoding RNA, the Ser7-P marks are placed early and retained until transcription termination at all Pol II-dependent genes. Chemical-genomic analysis reveals that the promoter-distal Ser7-P marks are not remnants of early phosphorylation but are placed anew by the CTD kinase Bur1. Consistent with the ability of Bur1 to facilitate transcription elongation and suppress cryptic transcription, high levels of Ser7-P are observed at highly transcribed genes. We propose that Ser7-P could facilitate elongation and suppress cryptic transcription.


Asunto(s)
Genoma , Familia de Multigenes , Sistemas de Lectura Abierta , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , ARN no Traducido , Especificidad por Sustrato , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA