Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(8): 739, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012428

RESUMEN

Pharmaceuticals are considered as contaminants of emerging concern, and their occurrence in diverse environmental matrices has been described during the last 25 years. Nonetheless, pharmaceutical occurrence has not been evenly described worldwide, and reports from some geographical areas such as most parts of Latin America are scarce. This work aims to address the situation of water pollution due to pharmaceuticals in Latin America by means of two main goals: i. First, reviewing the monitoring studies performed in Latin America on this topic (period 2009-2024), which were conducted in Brazil, Mexico, Colombia, Ecuador, Peru and Argentina, to highlight the most frequently detected compounds from each therapeutic group in the region. ii. Second, analyzing the case of Costa Rica through the hazard assessment and prioritization of pharmaceuticals based on the monitoring performed in this country (years 2011; 2018-2019). The monitoring in Costa Rica comprised a total of 163 sampling points: wastewater treatment plants (WWTPs) (14 urban WWTPs plus two landfill WWTPs; total samples n = 44 influents and n = 34 effluents), nine hospital effluents (n = 32), wastewater from livestock farms (six swine farms and seven dairy farms; n = 23 influents and n = 37 effluents), 64 continental surface water sampling points (n = 137), and 61 coastal seawater sampling points (n = 61). Risk assessment of detected concentrations by the hazard quotient (HQ) approach (period 2018-2019) revealed a total of 25 medium or high-hazard compounds (out of 37 detected compounds). The prioritization approach (which included the Frequency of Appearance (FoA), the Frequency of PNEC exceedance (FoE), and the Extent of predicted no-effect concentration (PNEC) exceedance (EoE)), showed a critical list of nine pharmaceuticals: caffeine, diphenhydramine, acetaminophen, lovastatin, gemfibrozil, ciprofloxacin, ibuprofen, doxycycline and norfloxacin. These compounds should be taken into account as a first concern during the implementation of environmental policies related to pharmaceutical products in the region.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Costa Rica , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Medición de Riesgo , Aguas Residuales/química , América Latina , Contaminación Química del Agua/estadística & datos numéricos , Eliminación de Residuos Líquidos
2.
Ecotoxicology ; 32(3): 383-393, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36995476

RESUMEN

Despite their environmental implications, ecotoxicological information regarding pesticide mixtures is relatively scarce. This study aimed to determine the ecotoxicity of individual pesticide formulations and their mixtures (insecticides and fungicides), which are applied during the production cycle of potato, according to agricultural practices from a Latin American region in Costa Rica. Two benchmark organisms were employed: Daphnia magna and Lactuca sativa. First, the evaluation of individual formulations (chlorothalonil, propineb, deltamethrin+imidacloprid, ziram, thiocyclam and chlorpyrifos) revealed differences between available EC50 for active ingredients (a.i.) and their respective formulations toward D. magna; on the contrary, no information could be retrieved from scientific literature for comparison in the case of L. sativa. In general, acute toxicity was higher toward D. magna than L. sativa. Moreover, interactions could not be determined on L. sativa, as the chlorothalonil formulation was not toxic at high levels and the concentration-response to propineb could not be fitted to obtain an IC50 value. The commercial formulation composed of deltamethrin+imidacloprid followed the concentration addition model (when compared with parameters retrieved from individual a.i.) and the other three mixtures evaluated (I: chlorothalonil-propineb-deltamethrin+imidacloprid; II: chlorothalonil-propineb-ziram-thiocyclam; III: chlorothalonil-propineb-chlorpyrifos) produced an antagonistic effect on D. magna, thus suggesting less acute toxicity than their individual components. Subsequent chronic studies showed that one of the most toxic mixtures (II) negatively affected D. magna reproduction at sublethal concentrations indicating that this mixture poses a risk to this species if these pesticides co-exist in freshwater systems. These findings provide useful data to better estimate the impact of real agricultural practices related to the use of agrochemicals.


Asunto(s)
Cloropirifos , Plaguicidas , Solanum tuberosum , Ziram , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Cloropirifos/toxicidad , Costa Rica , Ziram/farmacología , Daphnia
3.
Bull Environ Contam Toxicol ; 111(4): 51, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752279

RESUMEN

Animal husbandry wastewaters represent an important source of pharmaceuticals into the environment. This work aimed to evaluate the occurrence of pharmaceuticals and their hazard in wastewater from a model dairy farm from Costa Rica. Among the seven pharmaceuticals detected (acetaminophen, caffeine, carbamazepine, ibuprofen, ketoprofen, risperidone, sulfamethazine), caffeine, ibuprofen and acetaminophen showed the highest concentrations, while caffeine, carbamazepine and risperidone were the most frequently detected compounds. High (HQ ≥ 1) or medium (0.1 ≤ HQ < 1) hazard were estimated for three (caffeine, ibuprofen, risperidone) and two (acetaminophen, ketoprofen) pharmaceuticals, respectively; similarly, high overall hazard (∑HQ) and significant ecotoxicity were determined in samples from all sampling points. According to our results, the release of these aqueous matrices is a matter of environmental concern, as the treated wastewater is used for farm irrigation or directly released into nearby water streams. This work contributes to the knowledge on the scarcely described occurrence and risk of pharmaceuticals in Latin American regions.


Asunto(s)
Cetoprofeno , Contaminantes Químicos del Agua , Animales , Aguas Residuales , Cafeína , Ibuprofeno , Acetaminofén , Granjas , Risperidona , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua , Carbamazepina/análisis , Preparaciones Farmacéuticas
4.
Ecotoxicology ; 31(5): 714-724, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35348978

RESUMEN

Plants represent uncommon targets to evaluate pharmaceuticals toxicity. In this work, Lemna minor was employed as a plant model to determine the toxicity of selected pharmaceuticals, and to assay if such toxicity could be predicted by QSAR models based on green algae. Among eight compounds, measurable toxicity was determined for ketoprofen (EC50 = 11.8 ± 1.9 mg/L), fluoxetine (EC50 = 27.0 ± 8.7 mg/L) and clindamycin 2-phosphate (EC50 = 57.7 ± 1.7 mg/L). Even though a correlation of r2 = 0.87 was observed between experimental toxicity towards algae and L. minor, QSAR estimations based on algae data poorly predicted the toxicity of pharmaceuticals on the plant. More experimental data for L. minor are necessary to determine the applicability of these predictions; nonetheless, these results remark the importance of measuring experimental ecotoxicological parameters for individual taxa. The toxicity of pharmaceutical binary mixtures (ketoprofen, fluoxetine and clindamycin) revealed in some cases deviations from the concentration addition model; nonetheless these deviations were small, thus the interactions are unlikely to be of severe biological significance. Moreover, the EC50 concentrations determined for these pharmaceuticals are significantly higher than those detected in the environment, suggesting that acute effects on L. minor would not take place at ecosystem level.


Asunto(s)
Araceae , Cetoprofeno , Contaminantes Químicos del Agua , Clindamicina , Ecosistema , Fluoxetina/toxicidad , Cetoprofeno/toxicidad , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/toxicidad
5.
Ecotoxicol Environ Saf ; 195: 110419, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32182526

RESUMEN

Ecotoxicological evaluations require the use of assays with several bioindicators from different trophic levels. Only a few ecotoxicological tests using fungi have been developed, reason why, detection of adverse effects from compounds that exert fungicide action may be overlooked. This work developed a toxicity test based on the inhibition of laccase enzymatic activity in the fungus Trametes versicolor. The test was applied to several fungicides and succeeded to determine inhibition values (half maximum effective concentration, EC50) for most of them (flusilazole, imazalil, pyrimethanil, tetraconazole), though a clear dose-response was not evident for others (thiabendazole, metalaxyl). The application on atrazine (herbicide), imidacloprid (insecticide) and oxytetracycline (antibiotic), proved the proposed test is suitable towards other agrochemicals. The test was also used to estimate the detoxification resulting from two different approaches employed in the removal of agrochemicals. (a) First, in the liquid-phase elimination by fungal biomass simultaneously removing atrazine, imazalil, tebuconazole and triadimenol, the test showed a significant decrease in toxicity by biodegradation (adsorption contribution to detoxification was negligible). (b) Second, a solid-phase biomixture (used for pesticide degradation from agricultural wastewater) partially removed atrazine, imazalil, metalaxyl and pyrimethanil after 33 d; nonetheless, this system could not reduce the toxicity of the matrix, and higher laccase inhibition was detected after the treatment. The design test increases the battery of available bioassays to determine the toxicity of agrochemicals, and provides an interesting tool to monitor biodegradation processes.


Asunto(s)
Ecotoxicología/métodos , Monitoreo del Ambiente/métodos , Fungicidas Industriales/toxicidad , Lacasa/antagonistas & inhibidores , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Trametes/efectos de los fármacos , Agricultura , Biodegradación Ambiental , Bioensayo , Fungicidas Industriales/análisis , Trametes/enzimología
6.
Ecotoxicol Environ Saf ; 195: 110460, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32199216

RESUMEN

Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.


Asunto(s)
Plaguicidas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Agricultura , Biotransformación , Cloropirifos/metabolismo , Cocos , Linurona/metabolismo , Malatión/metabolismo , Morfolinas/metabolismo , Plaguicidas/toxicidad , Suelo/química , Clima Tropical , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
7.
Bull Environ Contam Toxicol ; 101(1): 137-143, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29858622

RESUMEN

Environmental contamination with neonicotinoid insecticides represents an issue of wide concern due to their negative effects on pollinators. The goal of this work was to evaluate the potential use of biomixtures employed in biopurification systems (BPS) to remove two neonicotinoid pesticides, imidacloprid and thiamethoxam, from wastewater of agricultural origin. The removal was assayed by quantification of the parent compounds and the detection of putative transformation products of imidacloprid by means of LC-MS/MS, and mineralization of radiolabeled imidacloprid. Two biomixtures (B1, B2) were prepared using coconut fiber, compost and two soils pre-exposed to imidacloprid (volumetric composition 50:25:25). After spiking of neonicotinoids and 228 days of treatment, the removal ranged from 22.3%-30.3% and 38.6%-43.7% for imidacloprid and thiamethoxam, respectively. Transformation products imidacloprid-urea, desnitro-imidacloprid and desnitro-olefin-imidacloprid were detected in both biomixtures. The mineralization of 14C-imidacloprid revealed DT50 (mineralization half-lives) values of 3466 and 7702 days in the biomixtures B1 and B2, respectively, markedly lower than those in the soil used in their preparation (8667 and 9902 days, respectively). As demonstrated by these findings, the high persistence of these compounds in the BPS suggests that additional biological (or physicochemical) approaches should be explored in order to decrease the impact of neonicotinoid-containing wastewater of agricultural origin.


Asunto(s)
Insecticidas/aislamiento & purificación , Neonicotinoides/aislamiento & purificación , Nitrocompuestos/aislamiento & purificación , Purificación del Agua , Agricultura , Biodegradación Ambiental , Radioisótopos de Carbono/química , Fenómenos Químicos , Cromatografía Liquida , Semivida , Límite de Detección , Oxazinas/aislamiento & purificación , Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Espectrometría de Masas en Tándem , Tiametoxam , Tiazoles/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación
8.
Ecotoxicol Environ Saf ; 135: 252-258, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27750092

RESUMEN

The use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d. Then the fungus was employed in the bioaugmentation of an optimized biomixture to remove the aforementioned carbamates plus carbofuran (CFN). Bioaugmented and non-bioaugmented systems removed over 99% ALD and MTM after 8d of treatment, nonetheless a slight initial delay in the removal was observed in the bioaugmented biomixtures (removal after 3d: ALD 87%/97%; MTM 86%/99%, in bioaugmented/non-bioaugmented systems). The elimination of the other carbamates was slower, but independent of the presence of the fungus: >98% for MTM after 35d and >99.5% for CFN after 22d. Though the bioaugmentation did not improve the removal capacity of the biomixture, it favored a lower production of transformation products at the first stages of the treatment, and in both cases, a marked decrease in the toxicity of the matrix was swiftly achieved along the process (from 435 to 448 TU to values <1TU in 16d).


Asunto(s)
Carbamatos/metabolismo , Insecticidas/metabolismo , Trametes/metabolismo , Aldicarb/metabolismo , Biodegradación Ambiental , Carbofurano/análogos & derivados , Carbofurano/metabolismo , Semivida , Inactivación Metabólica , Lacasa/análisis , Metiocarb/metabolismo , Metomil/metabolismo , Suelo/química , Factores de Tiempo
9.
Ecotoxicol Environ Saf ; 139: 481-487, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28214645

RESUMEN

The use of antibiotics in agriculture produces residues in wastewaters. The disposal of such wastewaters in biopurification systems (BPS) employed for the treatment of pesticides could result in the inhibition of the degrading capacity of the biomixtures used in the BPS. We assayed the effect of two commercial formulations of antibiotics used in agriculture, one containing kasugamycin (KSG) and the other oxytetracycline plus gentamicin (OTC+GTM), on the biomixture performance. Doses from 0.1mgkg-1 to 1000mgkg-1 of KSG increased the respiration of the biomixture, and low doses enhanced the mineralization rate of the insecticide 14C-chlorpyrifos. On the contrary, OTC+GTM depressed the respiration of the biomixture and the initial mineralization rate of 14C-chlorpyrifos; nonetheless, the antibiotics did not decrease overall mineralization values. The application of both formulations in the biomixture at a relevant concentration did not harm the removal of the fungicides carbendazim and metalaxyl, or their enhanced degradation; on the other hand, the biomixture was unable to dissipate tebuconazol or triadimenol, a result that was unchanged during the addition of the antibiotic formulations. These findings reveal that wastewater containing these antibiotics do not affect the performance of BPS. However, such a response may vary depending on the type of pesticide and microbial consortium in the biomixture.


Asunto(s)
Antibacterianos/farmacología , Cloropirifos/metabolismo , Fungicidas Industriales/metabolismo , Insecticidas/metabolismo , Aguas Residuales , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua , Agricultura , Alanina/análogos & derivados , Alanina/metabolismo , Bencimidazoles/metabolismo , Carbamatos/metabolismo , Consorcios Microbianos
10.
J Environ Sci (China) ; 46: 182-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27521950

RESUMEN

Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed.


Asunto(s)
Carbofurano/análisis , Cloropirifos/análisis , Cocos , Plaguicidas/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental
11.
Arch Latinoam Nutr ; 64(3): 192-7, 2014 Sep.
Artículo en Español | MEDLINE | ID: mdl-26137795

RESUMEN

Powdered milk is a frequently consumed product that does not need to be kept under cold conditions. Nevertheless, different microorganisms may contaminate it. Powdered milk is a highly consumed product by Costa Rican population, and Bacillus cereus is a potentially pathogenic bacteria associated to it, with the ability to develop toxins depending on the presence of the respective codifying genes. The aim of this study was to determine the presence of the toxigenic genes nheA, nheB and nheC from B. cereus strains, found in powdered milk sold at the Costa Rican national market. Five different lots of ten brands of powdered milk, distributed in the metropolitan area of San José, Costa Rica were analyzed. B cereus load was quantified using the Most Probable Number technique and identified using the Vitek system. The presence of the toxigenic genes was determined using the PCR technique. The isolation frequency of this bacteria in the powdered milk samples analyzed reached 50%, with populations ranging from 3 to > 100 MPN/g. Five out from nineteen strains were found positive for the three toxigenic genes, indicating contamination with potentially toxigenic B. cereus in powdered milk distributed in the national market, and an important risk for public. health.


Asunto(s)
Bacillus cereus/aislamiento & purificación , Enterotoxinas/genética , Microbiología de Alimentos , Leche/microbiología , Animales , Bacillus cereus/genética , Recuento de Colonia Microbiana , Costa Rica , ADN Bacteriano/genética , Enterotoxinas/aislamiento & purificación , Reacción en Cadena de la Polimerasa
12.
J Microbiol Methods ; 223: 106976, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925440

RESUMEN

Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Colorantes , Oryza , Oryza/microbiología , Colorantes/metabolismo , Colorantes/química , Reactores Biológicos/microbiología , Lacasa/metabolismo , Biomasa , Violeta de Genciana/metabolismo , Violeta de Genciana/química , Trametes/metabolismo , Trametes/enzimología , Micelio/metabolismo , Polyporaceae/metabolismo
13.
Aquat Toxicol ; 271: 106924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678909

RESUMEN

The effects of fluoxetine (antidepressant) and ketoprofen (analgesic) on aquatic ecosystems are largely unknown, particularly as a mixture. This work aimed at determining the effect of sublethal concentrations of both compounds individually (0.050 mg/L) and their mixture (0.025 mg/L each) on aquatic communities at a microcosm scale for a period of 14 d. Several physicochemical parameters were monitored to estimate functional alterations in the ecosystem, while model organisms (Daphnia magna, Lemna sp., Raphidocelis subcapitata) and the sequencing of 16S/18S rRNA genes permitted to determine effects on specific populations and changes in community composition, respectively. Disturbances were more clearly observed after 14 d, and overall, the microcosms containing fluoxetine (alone or in combination with ketoprofen) produced larger alterations on most physicochemical and biological variables, compared to the microcosm containing only ketoprofen, which suffered less severe changes. Differences in nitrogen species suggest alterations in the N-cycle due to the presence of fluoxetine; similarly, all pharmaceutical-containing systems decreased the brood rate of D. magna, while individual compounds inhibited the growth of Lemna sp. No clear trends were observed regarding R. subcapitata, as indirectly determined by chlorophyll quantification. The structure of micro-eukaryotic communities was altered in the fluoxetine-containing systems, whereas the structure of bacterial communities was affected to a greater extent by the mixture. The disruptions to the equilibrium of the microcosm demonstrate the ecological risk these compounds pose to aquatic ecosystems.


Asunto(s)
Fluoxetina , Cetoprofeno , Contaminantes Químicos del Agua , Fluoxetina/toxicidad , Cetoprofeno/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Ecosistema , Daphnia/efectos de los fármacos , Araceae/efectos de los fármacos
14.
Front Microbiol ; 15: 1357839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384273

RESUMEN

The biopurification systems (BPS) or biobeds are employed for the treatment of pesticide-containing wastewater of agricultural origin. The use of these devices for pesticide removal requires the proper optimization of the composition of biomixtures (BPS active matrix) according to the target pesticides applied on a specific crop and the available materials used in their elaboration. This work aims to design a biomixture for the simultaneous treatment of several pesticides applied in coffee crops, according to local practices in Costa Rica. Three biomixtures containing either coffee husk, coconut fiber or rice husk (as the lignocellulosic substrate) were applied for the removal of 12 pesticides. The profiles of pesticide elimination and the mineralization of radiolabeled chlorpyrifos (14C-chlorpyrifos) revealed that the best performance was achieved with the coconut fiber biomixture, even though similar detoxification patterns were determined in every biomixture (according to immobilization in Daphnia magna and germination tests in Lactuca sativa). The optimization of this biomixture's composition by means of a central composite design permitted the definition of two optimal compositions (compost:soil:coconut fiber, % v/v) that maximized pesticide removal: i. 29:7.3:63.7 and ii. 11:7.3:81.7. The validation of these optimized compositions also included the use of an alternative soil from another coffee farm and resulted in overall DT50 values of 7.8-9.0 d for the pesticide mixture. Considering the removal kinetics in the optimized biomixture, a 1 m3 BPS prototype was dimensioned to be eventually used in local coffee farms. This work provides relevant information for the design and implementation of BPS at on-farm conditions for the treatment of pesticide-containing wastewater of a major crop.

15.
Chemosphere ; 346: 140443, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303394

RESUMEN

Pharmaceuticals comprise a complex group of emerging pollutants. Despite the significant number of pharmaceuticals used in veterinary medicine, the input of these compounds into the environment due to livestock activities has been scarcely described. This work assays for the first time in Central America the occurrence of pharmaceuticals in farm wastewater in an area devoted to dairy production, and in the surrounding surface waters. Among 69 monitored pharmaceuticals, a total of eight compounds were detected in wastewater samples collected from seven dairy farms after three sampling campaigns. Six pharmaceuticals were considered either of high (albendazole, lovastatin and caffeine) or intermediate estimated hazard (ciprofloxacin, acetaminophen and ketoprofen) based on the HQ approach, while 26% of the samples were considered of high estimated hazard according to the cumulative ∑HQ approach. Similarly, when ecotoxicological tests were applied, all the samples showed some level of toxicity towards Daphnia magna, and most samples towards Vibrio fischeri and Lactuca sativa. Fourteen pharmaceuticals were detected in surface water samples collected in the surroundings of the dairy production farms, including rural and urban areas. Seven out of these compounds showed high estimated risk (risperidone, diphenhydramine, trimethoprim, fluoxetine, ofloxacin, caffeine and ibuprofen), while three (gemfibrozil, ciprofloxacin and cephalexin) exhibited intermediate estimated risk. In a similar worrisome way, 27% of these samples were estimated to pose high environmental risk according to the pharmaceutical content. Despite being nontoxic for D. magna or V. fischeri, frequent inhibition (>20%) of GI in L. sativa was determined in 34% of surface water samples; such findings raise concern on the apparent inceptive environmental pollution and risk within the area. According to the pharmaceutical content patterns in both kinds of studied matrices, no clear evidence of significant contamination in surface water due to livestock activities could be retrieved, suggesting a main role of urban influence.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , América Latina , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Cafeína , Monitoreo del Ambiente , Agua , Ciprofloxacina , Preparaciones Farmacéuticas
16.
Chemosphere ; 339: 139746, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549747

RESUMEN

This work aims to determine the occurrence, hazard and prioritization of pharmaceuticals from hospital wastewater in Costa Rica through the monitoring of 70 compounds and assessing their environmental risk through a hazard quotient approach (HQ). Moreover, the quantification of selected antibiotic resistance genes (ARGs) was conducted for the first time in this matrix in this geographical location. Thirty-four pharmaceuticals were detected, being caffeine, 1,7-dimethylxanthine, acetaminophen, ibuprofen, naproxen, ciprofloxacin and ketoprofen the most frequent (>50% of the samples). Eighteen pharmaceuticals exhibited high hazard (HQ ≥ 1), while five more showed medium hazard (1 > HQ ≥ 0.1). Prioritization, which also included frequency parameters, revealed caffeine, lovastatin, diphenhydramine, acetaminophen, ibuprofen, ciprofloxacin, and sildenafil as the compounds of major concern. Similarly, cumulative hazard per sample (ΣHQ) estimated high hazard towards aquatic organisms in every sample. All selected ARGs, except mcr-1 (polymyxin resistance), were detected. Among genes conferring resistance to beta-lactams, blaCTX-M and blaKPC were the most abundant, related to resistance to cephalosporins and carbapenems. Ecotoxicological evaluation showed mostly low toxicity towards Daphnia magna and Vibrio fischeri, contrary to the marked effect observed towards Lactuca sativa. These findings provide relevant and novel information on the risk posed by hospital wastewater and their pharmaceutical content in the Latin American environmental context.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Costa Rica , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ibuprofeno , Acetaminofén , Cafeína , Monitoreo del Ambiente , Medición de Riesgo , Hospitales , Antibacterianos/toxicidad , Preparaciones Farmacéuticas
17.
Environ Sci Technol ; 46(21): 12012-20, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23030544

RESUMEN

The use of sludge (biosolids) in land application may contribute to the spread of organic micropollutants as wastewater treatments do not completely remove these compounds. Therefore, the development of alternative strategies for sludge treatment is a matter of recent concern. The elimination of pharmaceuticals at pre-existent concentrations from sewage sludge was assessed, for the first time, in nonsterile biopiles by means of fungal bioaugmentation with Trametes versicolor (BTV-systems) and compared with the effect of autochthonous microbiota (NB-systems). The competition between the autochthonous fungal/bacterial communities and T. versicolor was studied using denaturing gradient gel electrophoresis (DGGE) and the cloning/sequencing approach. An inhibitory effect exerted by T. versicolor over bacterial populations was suggested. However, after 21 days, T. versicolor was no longer the main taxon in the fungal communities. The elimination profiles revealed an enhanced removal of atorvastatin-diclofenac-hydrochlorothiazide (during the whole treatment) and ranitidine-fenofibrate (at short periods) in the BTV biopiles in respect to NB biopiles, coincident with the presence of the fungus. For ibuprofen-clarithromycin-furosemide, the elimination profiles were similar irrespective of the system, and with carbamazepine no significant degradation was obtained. The results suggest that a fungal treatment with T. versicolor could be a promising process for the remediation of some pharmaceuticals in complex matrices such as biosolids.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Aguas del Alcantarillado/microbiología , Trametes/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biodegradación Ambiental , Electroforesis en Gel de Gradiente Desnaturalizante , Ergosterol/metabolismo , Lacasa/metabolismo , Preparaciones Farmacéuticas/análisis , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis
18.
J Environ Manage ; 104: 114-20, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22487399

RESUMEN

Ultraviolet (UV) filters are xenobiotic compounds that can enter the environment through the liquid effluent of wastewater treatment plants (WWTPs) and through adsorption in the sludge by-product because of their high hydrophobicity, as the sludge is subsequently applied as a fertiliser. A solid-state treatment of WWTP sludge with the white-rot fungus Trametes versicolor is reported in the present work as a feasible method for UV filter degradation, with reductions ranging from 87% in the case of 3-(4'-methylbenzylidene) camphor (4-MBC) to 100% for benzophenone-3 (BP3) and its metabolite 4,4'-dihydroxybenzophenone (4DHB). This study represents a first step in the development of a future fungal treatment for UV filters; thus, it is essential to prove that elimination is due only to the action of the fungus and not that of other microorganisms. To this end, the sludge was sterilised prior to fungal treatment. Biological assays indicate that T. versicolor readily eliminates oestrogenic activity, although it may be inefficient at eliminating other compounds, including some with dioxin-like activity. Degradation studies of 4-MBC in liquid media were also performed, and complete removal was achieved in less than 24 h. The main metabolites were identified, and the first steps of the transformation pathway were elucidated: a mono- or di-hydroxylation by cytochrome P450 and a subsequent conjugation with a pentose. None of 4-MBC transformation products was found to be responsible for increased dioxin-like activity in the sludge.


Asunto(s)
Alcanfor/análogos & derivados , Eliminación de Residuos/métodos , Aguas del Alcantarillado/microbiología , Alcanfor/química , Fermentación , Contaminantes Químicos del Agua/química
19.
Environ Pollut ; 284: 117498, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261216

RESUMEN

A monitoring network was established in streams within a catchment near the Costa Rican Pacific coast (2008-2011) to estimate the impact of pesticides in surface water (84 samples) and sediments (84 samples) in areas under the influence of melon and watermelon production. A total of 66 (water) and 47 (sediment) pesticides were analyzed, and an environmental risk assessment (ERA) was performed for four taxa (algae, Daphnia magna, fish and Chironomus riparius). One fungicide and seven insecticides were detected in water and/or sediment; the fungicide azoxystrobin (water) and the insecticide cypermethrin (sediments) were the most frequently detected pesticides. The insecticides endosulfan (5.76 µg/L) and cypermethrin (301 µg/kg) presented the highest concentrations in water and sediment, respectively. The ERA revealed acute risk in half of the sampling points of the melon-influenced area and in every sampling point from the watermelon-influenced area. Safety levels were exceeded within and around the crop fields, suggesting that agrochemical contamination was distributed along the catchment, with potential influence of nearby crops. Acute risk was caused by the insecticides chlorpyrifos, cypermethrin and endosulfan to D. magna, fish and C. riparius; the latter was the organism with the overall highest/continuous risk. High chronic risk was determined in all but one sampling point, and revealed a higher number of pesticides of concern. Cypermethrin was the only pesticide to pose chronic risk for all benchmark organisms. The results provide new information on the risk that tropical crops pose to aquatic ecosystems, and highlight the importance of including the analysis of sediment concentrations and chronic exposure in ERA.


Asunto(s)
Citrullus , Cucurbitaceae , Plaguicidas , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Plaguicidas/análisis , Plaguicidas/toxicidad , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
20.
PLoS One ; 16(2): e0237288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571212

RESUMEN

Many small parasitoid wasps have a black head, an orange mesosoma and a black metasoma (BOB color pattern), which is usually present in both sexes. A likely function of this widespread pattern is aposematic (warning) coloration, but this has never been investigated. To test this hypothesis, we presented spider predators (Lyssomanes jemineus), both field-captured and bred in captivity from eggs, to four wasp genera (Baryconus, Chromoteleia, Macroteleia and Scelio), each genus being represented by a BOB morphospecies and black morphospecies. We also used false prey, consisting of lures made of painted rice grains. Behavioral responses were analyzed with respect to presence or absence of the BOB pattern. In order to better understand the results obtained, two additional studies were performed. First, the reflection spectrum of the cuticle of the wasp and a theoretical visual sensibility of the spider were used to calculate a parameter we called "absorption contrast" that allows comparing the perception contrast between black and orange in each wasp genus as viewed by the spider. Second, acute toxicity trials with the water flea, Daphnia magna, were performed to determine toxicity differences between BOB and non-BOB wasps. At least some of the results suggest that the BOB color pattern may possibly play an aposematic role.


Asunto(s)
Mimetismo Biológico/genética , Conducta Predatoria/fisiología , Pigmentación de la Piel/fisiología , Animales , Mimetismo Biológico/fisiología , Color , Femenino , Insectos , Masculino , Pigmentación/fisiología , Arañas/fisiología , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA