Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 619(7970): 650-657, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344587

RESUMEN

Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al ADN , Complejos Multiproteicos , Recombinasa Rad51 , Proteínas Supresoras de Tumor , Humanos , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Recombinación Homóloga , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias/genética , Neoplasias/prevención & control , Proteómica , Simulación por Computador , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Roturas del ADN de Doble Cadena
2.
Mol Cell ; 55(2): 227-37, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24981174

RESUMEN

Approximately 30% of eukaryotic proteins contain hydrophobic signals for localization to the secretory pathway. These proteins can be mislocalized in the cytosol due to mutations in their targeting signals, certain stresses, or intrinsic inefficiencies in their translocation. Mislocalized proteins (MLPs) are protected from aggregation by the Bag6 complex and degraded by a poorly characterized proteasome-dependent pathway. Here, we identify the ubiquitin ligase RNF126 as a key component of the MLP degradation pathway. In vitro reconstitution and fractionation studies reveal that RNF126 is the primary Bag6-dependent ligase. RNF126 is recruited to the N-terminal Ubl domain of Bag6 and preferentially ubiquitinates juxtahydrophobic lysine residues on Bag6-associated clients. Interfering with RNF126 recruitment in vitro prevents ubiquitination, and RNF126 depletion in cells partially stabilizes a Bag6 client. Bag6-dependent ubiquitination can be recapitulated with purified components, paving the way for mechanistic analyses of downstream steps in this cytosolic quality control pathway.


Asunto(s)
Chaperonas Moleculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Citosol/enzimología , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas PrPC/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Células Sf9 , Spodoptera , Ubiquitinación
3.
Mol Cell ; 39(4): 548-59, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797627

RESUMEN

Protein ubiquitination is catalyzed by ubiquitin-conjugating enzymes (E2s) in collaboration with ubiquitin-protein ligases (E3s). This process depends on nucleophilic attack by a substrate lysine on a thioester bond linking the C terminus of ubiquitin to a cysteine in the E2 active site. Different E2 family members display specificity for lysines in distinct contexts. We addressed the mechanistic basis for this lysine selectivity in Ubc1, an E2 that catalyzes the ubiquitination of lysine 48 (K48) in ubiquitin, leading to the formation of K48-linked polyubiquitin chains. We identified a cluster of polar residues near the Ubc1 active site, as well as a residue in ubiquitin itself, that are required for catalysis of K48-specific ubiquitin ligation, but not for general activity toward other lysines. Our results suggest that the active site of Ubc1, as well as the surface of ubiquitin, contains specificity determinants that channel specific lysines to the central residues involved directly in catalysis.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Alanina , Sitios de Unión , Catálisis , Dominio Catalítico , Glutamina , Concentración de Iones de Hidrógeno , Cinética , Leucina , Lisina , Modelos Moleculares , Poliubiquitina/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Treonina , Tirosina , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
4.
J Med Chem ; 67(7): 5538-5566, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38513086

RESUMEN

Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.


Asunto(s)
Proteínas Nucleares , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ligandos
5.
Cell Rep ; 42(2): 112062, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36729836

RESUMEN

Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.


Asunto(s)
Replicación del ADN , ADN , Humanos , Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Inestabilidad Genómica
6.
Cell Rep ; 33(3): 108289, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086055

RESUMEN

MutSα and MutSß play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSß, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSß binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSß and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSß in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.


Asunto(s)
Resolvasas de Unión Holliday/metabolismo , Proteínas MutS/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Células HEK293 , Resolvasas de Unión Holliday/fisiología , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/metabolismo , Unión Proteica , Recombinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
7.
Mol Biol Cell ; 15(7): 3366-78, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15090617

RESUMEN

Kinetochores are composed of a large number of protein complexes that must be properly assembled on DNA to attach chromosomes to the mitotic spindle and to coordinate their segregation with the advance of the cell cycle. CBF3 is an inner kinetochore complex in the budding yeast Saccharomyces cerevisiae that nucleates the recruitment of all other kinetochore proteins to centromeric DNA. Skp1p and Sgt1p act through the core CBF3 subunit, Ctf13p, and are required for CBF3 to associate with centromeric DNA. To investigate the contribution of Skp1p and Sgt1p to CBF3 function, we have used a combination of in vitro binding assays and a unique protocol for synchronizing the assembly of kinetochores in cells. We have found that the interaction between Skp1p and Sgt1p is critical for the assembly of CBF3 complexes. CBF3 assembly is not restricted during the cell cycle and occurs in discrete steps; Skp1p and Sgt1p contribute to a final, rate-limiting step in assembly, the binding of the core CBF3 subunit Ctf13p to Ndc10p. The assembly of CBF3 is opposed by its turnover and disruption of this balance compromises kinetochore function without affecting kinetochore formation on centromeric DNA.


Asunto(s)
Proteínas F-Box/metabolismo , Cinetocoros/metabolismo , Proteínas Represoras/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Segregación Cromosómica/efectos de los fármacos , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Glucosa/farmacología , Mutación/genética , Proteínas Nucleares/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
8.
Science ; 355(6322): 298-302, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104892

RESUMEN

Newly synthesized proteins are triaged between biosynthesis and degradation to maintain cellular homeostasis, but the decision-making mechanisms are unclear. We reconstituted the core reactions for membrane targeting and ubiquitination of nascent tail-anchored membrane proteins to understand how their fate is determined. The central six-component triage system is divided into an uncommitted client-SGTA complex, a self-sufficient targeting module, and an embedded but self-sufficient quality control module. Client-SGTA engagement of the targeting module induces rapid, private, and committed client transfer to TRC40 for successful biosynthesis. Commitment to ubiquitination is dictated primarily by comparatively slower client dissociation from SGTA and nonprivate capture by the BAG6 subunit of the quality control module. Our results provide a paradigm for how priority and time are encoded within a multichaperone triage system.


Asunto(s)
Proteínas de la Membrana/química , Modelos Moleculares , Biosíntesis de Proteínas , Proteolisis , ATPasas Transportadoras de Arsenitos/química , Proteínas Portadoras/química , Chaperonas Moleculares/química , Ubiquitinación
9.
Dev Cell ; 23(5): 896-907, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23153486

RESUMEN

The protein biosynthetic machinery, composed of ribosomes, chaperones, and localization factors, is increasingly found to interact directly with factors dedicated to protein degradation. The coupling of these two opposing processes facilitates quality control of nascent polypeptides at each stage of their maturation. Sequential checkpoints maximize the overall fidelity of protein maturation, minimize the exposure of defective products to the bulk cellular environment, and protect organisms from protein misfolding diseases.


Asunto(s)
Biosíntesis de Proteínas , Animales , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , ARN Mensajero/metabolismo , Ribosomas/metabolismo
10.
J Biol ; 8(10): 92, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19874575

RESUMEN

The anaphase-promoting complex (APC) is a ubiquitin-protein ligase required for the completion of mitosis in all eukaryotes. Recent mechanistic studies reveal how this remarkable enzyme combines specificity in substrate binding with flexibility in ubiquitin transfer, thereby allowing the modification of multiple lysines on the substrate as well as specific lysines on ubiquitin itself.


Asunto(s)
Modelos Biológicos , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Biocatálisis , Mitosis/fisiología , Especificidad por Sustrato , Ubiquitina/química , Complejos de Ubiquitina-Proteína Ligasa/química
11.
Cell ; 130(1): 127-39, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17632060

RESUMEN

The anaphase-promoting complex (APC), or cyclosome, is an E3 ubiquitin-protein ligase that collaborates with E2 ubiquitin-conjugating enzymes to assemble polyubiquitin chains on proteins important for cell-cycle progression. It remains unclear how the APC - or many other E3s - promotes the multiple distinct reactions necessary for chain assembly. We addressed this problem by analyzing APC interactions with different E2s. We screened all budding yeast E2s as APC coenzymes in vitro and found that two, Ubc4 and Ubc1, are the key E2 partners for the APC. These proteins display strikingly different but complementary enzymatic behaviors: Ubc4 supports the rapid monoubiquitination of multiple lysines on APC targets, while Ubc1 catalyzes K48-linked polyubiquitin chain assembly on preattached ubiquitins. Mitotic APC function is lost in yeast strains lacking both Ubc1 and Ubc4. E2-25K, a human homolog of Ubc1, also promotes APC-dependent chain extension on preattached ubiquitins. We propose that sequential E2 proteins catalyze K48-linked polyubiquitination and thus proteasomal destruction of APC targets.


Asunto(s)
Poliubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/fisiología , Células HeLa , Humanos , Poliubiquitina/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA