Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 143(21): 2091-2109, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33709773

RESUMEN

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.


Asunto(s)
Aneurisma de la Aorta/fisiopatología , Síndrome de Marfan/genética , Mitocondrias/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de Marfan/fisiopatología , Ratones
2.
FASEB J ; 35(1): e21213, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368614

RESUMEN

Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Eliminación de Gen , Inmunidad Celular , Enfermedades Renales/inmunología , Riñón/inmunología , Células Th17/inmunología , Animales , Proteínas de Unión al Calcio/inmunología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Ratones , Células Th17/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/inmunología , Obstrucción Ureteral/patología
3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408952

RESUMEN

Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.


Asunto(s)
Aterosclerosis , Mediadores de Inflamación , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Eicosanoides/farmacología , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Remodelación Vascular
4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163470

RESUMEN

Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.


Asunto(s)
Lesión Renal Aguda/metabolismo , Macrófagos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Humanos , Regeneración , Fenotipo Secretor Asociado a la Senescencia
5.
Clin Sci (Lond) ; 134(5): 513-527, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32104886

RESUMEN

An important link exists between hypertension and inflammation. Hypertensive patients present elevated circulating levels of proinflammatory cytokines, including interleukin-17A (IL-17A). This cytokine participates in host defense, autoimmune and chronic inflammatory pathologies, and cardiovascular diseases, mainly through the regulation of proinflammatory factors. Emerging evidence also suggests that IL-17A could play a role in regulating blood pressure and end-organ damage. Here, our preclinical studies in a murine model of systemic IL-17A administration showed that increased levels of circulating IL-17A raised blood pressure induced inward remodeling of small mesenteric arteries (SMAs) and arterial stiffness. In IL-17A-infused mice, treatment with hydralazine and hydrochlorothiazide diminished blood pressure elevation, without modifying mechanical and structural properties of SMA, suggesting a direct vascular effect of IL-17A. The mechanisms of IL-17A seem to involve an induction of vascular smooth muscle cell (VSMC) hypertrophy and phenotype changes, in the absence of extracellular matrix (ECM) proteins accumulation. Accordingly, treatment with an IL-17A neutralizing antibody diminished SMA remodeling in a model of angiotensin II (Ang II) infusion. Moreover, in vitro studies in VSMCs reported here, provide further evidence of the direct effects of IL-17A on cell growth responses. Our experimental data suggest that IL-17A is a key mediator of vascular remodeling of the small arteries, which might contribute, at least in part, to blood pressure elevation.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Interleucina-17/farmacología , Arterias Mesentéricas/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Forma de la Célula/efectos de los fármacos , Humanos , Hipertensión/fisiopatología , Interleucina-17/administración & dosificación , Masculino , Arterias Mesentéricas/fisiología , Ratones Endogámicos C57BL , Músculo Liso Vascular , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Vasoconstrictores/administración & dosificación , Vasoconstrictores/farmacología
6.
J Pathol ; 244(2): 227-241, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29160908

RESUMEN

Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Enfermedades Renales/enzimología , Riñón/enzimología , Animales , Factor de Crecimiento del Tejido Conjuntivo/deficiencia , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Fibroblastos/enzimología , Fibroblastos/patología , Fibrosis , Ácido Fólico , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células 3T3 NIH , Fragmentos de Péptidos , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099757

RESUMEN

Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.


Asunto(s)
Aterosclerosis/metabolismo , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Biomarcadores/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular/efectos de los fármacos
8.
J Pathol ; 236(4): 407-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25810250

RESUMEN

Inflammation is a main feature of progressive kidney disease. Gremlin binds to bone morphogenetic proteins (BMPs), acting as an antagonist and regulating nephrogenesis and fibrosis among other processes. Gremlin also binds to vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells to induce angiogenesis. In renal cells, gremlin regulates proliferation and fibrosis, but there are no data about inflammatory-related events. We have investigated the direct effects of gremlin in the kidney, evaluating whether VEGFR2 is a functional gremlin receptor. Administration of recombinant gremlin to murine kidneys induced rapid and sustained activation of VEGFR2 signalling, located in proximal tubular epithelial cells. Gremlin bound to VEGFR2 in these cells in vitro, activating this signalling pathway independently of its action as an antagonist of BMPs. In vivo, gremlin caused early renal damage, characterized by activation of the nuclear factor (NF)-κB pathway linked to up-regulation of pro-inflammatory factors and infiltration of immune inflammatory cells. VEGFR2 blockade diminished gremlin-induced renal inflammatory responses. The link between gremlin/VEGFR2 and NF-κB/inflammation was confirmed in vitro. Gremlin overexpression was associated with VEGFR2 activation in human renal disease and in the unilateral ureteral obstruction experimental model, where VEGFR2 kinase inhibition diminished renal inflammation. Our data show that a gremlin/VEGFR2 axis participates in renal inflammation and could be a novel target for kidney disease.


Asunto(s)
Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Riñón/metabolismo , Nefritis/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Citocinas , Modelos Animales de Enfermedad , Femenino , Humanos , Riñón/patología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Nefritis/etiología , Nefritis/genética , Nefritis/patología , Unión Proteica , Interferencia de ARN , Estudios Retrospectivos , Transducción de Señal , Factores de Tiempo , Transfección , Obstrucción Ureteral/complicaciones , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
9.
Mediators Inflamm ; 2015: 506041, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074680

RESUMEN

The CCN family member 2 (CCN2, also known as connective tissue growth factor) may behave as a risk biomarker and a potential therapeutic target for renal disease. CCN2 participates in the regulation of inflammation and fibrosis. TGF-ß is considered the main fibrogenic cytokine; however, in some pathological settings TGF-ß also has anti-inflammatory properties. CCN2 has been proposed as a downstream profibrotic mediator of TGF-ß, but data on TGF-ß role in CCN2 actions are scarce. Our aim was to evaluate the effect of TGF-ß blockade in CCN2-mediated experimental renal damage. Systemic administration of the C-terminal module of CCN2 to mice caused sustained renal inflammation. In these mice, TGF-ß blockade, using an anti-TGF-ß neutralizing antibody, significantly increased renal expression of the NGAL (a kidney injury biomarker), kidney infiltration by monocytes/macrophages, and upregulation of MCP-1 expression. The anti-inflammatory effect of TGF-ß seems to be mediated by a dysregulation of the systemic Treg immune response, shown by decreased levels of circulating CD4(+)/Foxp3(+)Treg cells. Our experimental data support the idea that TGF-ß exerts anti-inflammatory actions in the kidney and suggest that it is not an optimal therapeutic target.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/toxicidad , Inflamación/inducido químicamente , Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/inmunología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Animales , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores CCR2/metabolismo
10.
Kidney Int ; 86(2): 303-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24552849

RESUMEN

The classical view of the immune system has changed by the discovery of novel T-helper (Th) subsets, including Th17 (IL-17A-producing cells). IL-17A participates in immune-mediated glomerulonephritis and more recently in inflammatory pathologies, including experimental renal injury. Peritoneal dialysis patients present chronic inflammation and Th1/Th2 imbalance, but the role of the Th17 response in peritoneal membrane damage has not been investigated. In peritoneal biopsies from dialyzed patients, IL-17A immunostaining was found mainly in inflammatory areas and was absent in the healthy peritoneum. IL-17A-expressing cells included lymphocytes (CD4+ and γδ), neutrophils, and mast cells. Elevated IL-17A effluent concentrations were found in long-term peritoneal dialysis patients. Studies in mice showed that repeated exposure to recombinant IL-17A caused peritoneal inflammation and fibrosis. Moreover, chronic exposure to dialysis fluids resulted in a peritoneal Th17 response, including elevated IL-17A gene and protein production, submesothelial cell infiltration of IL-17A-expressing cells, and upregulation of Th17 differentiation factors and cytokines. IL-17A neutralization diminished experimental peritoneal inflammation and fibrosis caused by chronic exposure to dialysis fluids in mice. Thus, IL-17A is a key player of peritoneum damage and it may be a good candidate for therapeutic intervention in peritoneal dialysis patients.


Asunto(s)
Interleucina-17/metabolismo , Diálisis Peritoneal/efectos adversos , Peritoneo/inmunología , Peritoneo/lesiones , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/administración & dosificación , Citocinas/metabolismo , Soluciones para Diálisis/efectos adversos , Femenino , Humanos , Interleucina-17/administración & dosificación , Interleucina-17/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Peritoneo/patología , Peritonitis/etiología , Peritonitis/inmunología , Peritonitis/patología , Células Th17/inmunología , Factores de Transcripción/metabolismo
11.
Clin Sci (Lond) ; 127(1): 19-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24383472

RESUMEN

ILK (integrin-linked kinase) is an intracellular serine/threonine kinase involved in cell-matrix interactions. ILK dysregulation has been described in chronic renal disease and modulates podocyte function and fibrosis, whereas data about its role in inflammation are scarce. AngII (angiotensin II) is a pro-inflammatory cytokine that promotes renal inflammation. AngII blockers are renoprotective and down-regulate ILK in experimental kidney disease, but the involvement of ILK in the actions of AngII in the kidney has not been addressed. Therefore we have investigated whether ILK signalling modulates the kidney response to systemic AngII infusion in wild-type and ILK-conditional knockout mice. In wild-type mice, AngII induced an inflammatory response, characterized by infiltration of monocytes/macrophages and lymphocytes, and up-regulation of pro-inflammatory factors (chemokines, adhesion molecules and cytokines). AngII activated several intracellular signalling mechanisms, such as the NF-κB (nuclear factor κB) transcription factor, Akt and production of ROS (reactive oxygen species). All these responses were prevented in AngII-infused ILK-deficient mice. In vitro studies characterized further the mechanisms regulating the inflammatory response modulated by ILK. In cultured tubular epithelial cells ILK blockade, by siRNA, inhibited AngII-induced NF-κB subunit p65 phosphorylation and its nuclear translocation. Moreover, ILK gene silencing prevented NF-κB-related pro-inflammatory gene up-regulation. The results of the present study demonstrate that ILK plays a key role in the regulation of renal inflammation by modulating the canonical NF-κB pathway, and suggest a potential therapeutic target for inflammatory renal diseases.


Asunto(s)
Angiotensina II/farmacología , Nefritis/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Células Cultivadas , Femenino , Silenciador del Gen , Humanos , Mediadores de Inflamación/metabolismo , Túbulos Renales/citología , Túbulos Renales/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Nefritis/inducido químicamente , Nefritis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/fisiología , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos
12.
Methods Cell Biol ; 188: 61-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880528

RESUMEN

Aortic aneurysms (AAs) are a major public health challenge, featured by a progressive impairs in aortic wall integrity that drives to aortic dilation and, in end stage, to its rupture. Despite important advances in the surgical treatment of aortic aneurysms, there is currently no pharmacological intervention that prevents their development, reduces their expansion, or avoids their rupture. In addition to classic risk factors such age or gender, several heritable connective tissue disorders have been associated with AA developing, highlighting the role of extracellular matrix (ECM) genes alterations in the developing of AA. In this sense, we have recently demonstrated that global deletion of the cellular communicating network factor 2 (CCN2), previously known as connective tissue growth factor (CTGF) due to its role in the extracellular matrix formation, predisposes to early and lethal AAs development after Angiotensin II (Ang II) infusion in mice. Here, we detail the protocol to induce and detect AAs generation in inducible global CCN2 knockout mice after Ang II infusion which allow the characterization of CCN role in AA development and may help to the development of pharmacological target for AA treatment.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta , Factor de Crecimiento del Tejido Conjuntivo , Modelos Animales de Enfermedad , Ratones Noqueados , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Ratones , Angiotensina II/metabolismo , Angiotensina II/farmacología , Aneurisma de la Aorta/patología , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/etiología
13.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608525

RESUMEN

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Asunto(s)
Ácidos Docosahexaenoicos , Hipertensión , Ratones Endogámicos C57BL , Obesidad , Remodelación Vascular , Animales , Masculino , Humanos , Ácidos Docosahexaenoicos/farmacología , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/metabolismo , Remodelación Vascular/efectos de los fármacos , Ratones , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Dieta Alta en Grasa/efectos adversos , Angiotensina II , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Ratones Obesos , Vasoconstricción/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Animales de Enfermedad
14.
Lab Invest ; 93(7): 812-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23648563

RESUMEN

Connective tissue growth factor (CTGF/CCN2) is a matricellular protein susceptible to proteolytic degradation. CCN2 levels have been suggested as a potential risk biomarker in several chronic diseases. In body fluids, CCN2 full-length and its degradation fragments can be found; however, their in vivo effects are far from being elucidated. CCN2 was described as a profibrotic mediator, but this concept is changing to a proinflammatory cytokine. In vitro, CCN2 full-length and its C-terminal module IV (CCN2(IV)) exert proinflammatory properties. Emerging evidence suggest that Th17 cells, and its effector cytokine IL-17A, participate in chronic inflammatory diseases. Our aim was to explore whether CCN2(IV) could regulate the Th17 response. In vitro, stimulation of human naive CD4+ T lymphocytes with CCN2(IV) resulted in differentiation to Th17 phenotype. The in vivo effects of CCN2(IV) were studied in C57BL/6 mice. Intraperitoneal administration of recombinant CCN2(IV) did not change serum IL-17A levels, but caused an activation of the Th17 response in the kidney, characterized by interstitial infiltration of Th17 (IL17A+/CD4+) cells and upregulation of proinflammatory mediators. In CCN2(IV)-injected mice, elevated renal levels of Th17-related factors (IL-17A, IL-6, STAT3 and RORγt) were found, whereas Th1/Th2 cytokines or Treg-related factors (TGF-ß and Foxp-3) were not modified. Treatment with an anti-IL-17A neutralizing antibody diminished CCN2(IV)-induced renal inflammation. Our findings unveil that the C-terminal module of CCN2 induces the Th17 differentiation of human Th17 cells and causes a renal Th17 inflammatory response. Furthermore, these data bear out that IL-17A targeting is a promising tool for chronic inflammatory diseases, including renal pathologies.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Interleucina-17/sangre , Riñón/inmunología , Células Th17/fisiología , Animales , Factor de Crecimiento del Tejido Conjuntivo/administración & dosificación , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Regulación hacia Arriba
15.
Hypertension ; 80(1): 84-96, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36337053

RESUMEN

BACKGROUND: Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS: Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS: Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS: There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.


Asunto(s)
Angiotensina II , Hipertensión , Ratones , Animales , Ratones Endogámicos C57BL , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Fibrosis
16.
Nephron Exp Nephrol ; 122(1-2): 62-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23548835

RESUMEN

BACKGROUND/AIMS: Chronic kidney disease is characterized by accumulation of extracellular matrix in the tubulointerstitial area. Fibroblasts are the main matrix-producing cells. One source of activated fibroblasts is the epithelial mesenchymal transition (EMT). In cultured tubular epithelial cells, transforming growth factor-ß (TGF-ß1) induced Gremlin production associated with EMT phenotypic changes, and therefore Gremlin has been proposed as a downstream TGF-ß1 mediator. Gremlin is a developmental gene upregulated in chronic kidney diseases associated with matrix accumulation, but its direct role in the modulation of renal fibrosis and its relation with TGF-ß has not been investigated. METHODS: Murine renal fibroblasts and human tubular epithelial cells were studied. Renal fibrosis was determined by evaluation of key profibrotic factors, extracellular matrix proteins (ECM) and EMT markers by Western blot/confocal microscopy or real-time PCR. Endogenous Gremlin was targeted with small interfering RNA. RESULTS: In murine fibroblasts, stimulation with recombinant Gremlin upregulated profibrotic genes, such as TGF-ß1, and augmented the production of ECM proteins, including type I collagen. The blockade of endogenous Gremlin with small interfering RNA inhibited TGF-ß1-induced ECM upregulation. In tubular epithelial cells Gremlin also increased profibrotic genes and caused EMT changes: phenotypic modulation to myofibroblast-like morphology, loss of epithelial markers and in-duction of mesenchymal markers. Moreover, Gremlin gene silencing inhibited TGF-ß1-induced EMT changes. CONCLUSIONS: Gremlin directly activates profibrotic events in cul-tured renal fibroblasts and tubular epithelial cells. Moreover, endogenous Gremlin blockade inhibited TGF-ß-mediated matrix production and EMT, suggesting that Gremlin could be a novel therapeutic target for renal fibrosis.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Riñón/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Células Cultivadas , Citocinas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/patología , Ratones , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/genética
17.
Antioxidants (Basel) ; 11(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35453386

RESUMEN

Aging is a risk factor for several diseases, including cardiovascular disease, type 2 diabetes, hypertension, cancer, osteoarthritis, and Alzheimer; oxidative stress is a key player in the development and progression of aging and age-associated diseases [...].

18.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453365

RESUMEN

In recent years, gut dysbiosis has been related to some peripheral vascular alterations linked to hypertension. In this work, we explore whether gut dysbiosis is related to vascular innervation dysfunction and altered nitric oxide (NO) production in the superior mesenteric artery, one of the main vascular beds involved in peripheral vascular resistance. For this purpose, we used spontaneously hypertensive rats, either treated or not with the commercial synbiotic formulation Prodefen® (108 colony forming units/day, 4 weeks). Prodefen® diminished systolic blood pressure and serum endotoxin, as well as the vasoconstriction elicited by electrical field stimulation (EFS), and enhanced acetic and butyric acid in fecal samples, and the vasodilation induced by the exogenous NO donor DEA-NO. Unspecific nitric oxide synthase (NOS) inhibitor L-NAME increased EFS-induced vasoconstriction more markedly in rats supplemented with Prodefen®. Both neuronal NO release and neuronal NOS activity were enhanced by Prodefen®, through a hyperactivation of protein kinase (PK)A, PKC and phosphatidylinositol 3 kinase-AKT signaling pathways. The superoxide anion scavenger tempol increased both NO release and DEA-NO vasodilation only in control animals. Prodefen® caused an increase in both nuclear erythroid related factor 2 and superoxide dismutase activities, consequently reducing both superoxide anion and peroxynitrite releases. In summary, Prodefen® could be an interesting non-pharmacological approach to ameliorate hypertension.

19.
Br J Pharmacol ; 179(11): 2733-2753, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34877656

RESUMEN

BACKGROUND AND PURPOSE: Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in the development and the metabolic and cardiovascular alterations of obesity. EXPERIMENTAL APPROACH: mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was evaluated by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were assessed by myography. Histological studies, q-RT-PCR, and western blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients was correlated with vascular damage. KEY RESULTS: Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared with mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodelling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodelling, vessel stiffness, and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS: mPGES-1 inhibition might be a novel therapeutic approach to the management of obesity and the associated cardiovascular and metabolic alterations.


Asunto(s)
Resistencia a la Insulina , Obesidad , Prostaglandina-E Sintasas , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Femenino , Fibrosis , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo
20.
Hypertension ; 79(3): e42-e55, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35138869

RESUMEN

BACKGROUND: CCN2 (cellular communication network factor 2) is a matricellular protein involved in cell communication and microenvironmental signaling responses. CCN2 is known to be overexpressed in several cardiovascular diseases, but its role is not completely understood. METHODS: Here, CCN2 involvement in aortic wall homeostasis and response to vascular injury was investigated in inducible <i>Ccn2</i>-deficient mice, with induction of vascular damage by infusion of Ang II (angiotensin II; 15 days), which is known to upregulate CCN2 expression in the aorta. RESULTS: Ang II infusion in CCN2-silenced mice lead to 60% mortality within 10 days due to rapid development and rupture of aortic aneurysms, as evidenced by magnetic resonance imaging, echography, and histological examination. <i>Ccn2</i> deletion decreased systolic blood pressure and caused aortic structural and functional changes, including elastin layer disruption, smooth muscle cell alterations, augmented distensibility, and increased metalloproteinase activity, which were aggravated by Ang II administration. Gene ontology analysis of RNA sequencing data identified aldosterone biosynthesis as one of the most enriched terms in CCN2-deficient aortas. Consistently, treatment with the mineralocorticoid receptor antagonist spironolactone before and during Ang II infusion reduced aneurysm formation and mortality, underscoring the importance of the aldosterone pathway in Ang II-induced aorta pathology. CONCLUSIONS: CCN2 is critically involved in the functional and structural homeostasis of the aorta and in maintenance of its integrity under Ang II-induced stress, at least, in part, by disruption of the aldosterone pathway. Thus, this study opens new avenues to future studies in disorders associated to vascular pathologies.


Asunto(s)
Aorta/metabolismo , Aneurisma de la Aorta/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Angiotensina II/farmacología , Animales , Aorta/efectos de los fármacos , Aneurisma de la Aorta/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA