Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670072

RESUMEN

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Asunto(s)
Neuronas , Animales , Ratones , Ratas , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Blastocisto/metabolismo , Blastocisto/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Especificidad de la Especie , Ratones Endogámicos C57BL , Masculino
2.
Proc Natl Acad Sci U S A ; 117(37): 22920-22931, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32873644

RESUMEN

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs). The germline-targeting HIV immunogen eOD-GT8 60mer is currently in clinical trial as a candidate bnAb vaccine priming immunogen. To attempt to model human immune responses to the eOD-GT8 60mer, we tested each authentic naive human VRC01-class BCR mouse model under rare human physiological B cell precursor frequency conditions. B cells with high (HuGL18HL) or medium (HuGL17HL) affinity BCRs were primed, recruited to germinal centers, and they affinity matured, and formed memory B cells. Precursor frequency and affinity interdependently influenced responses. Taken together, these experiments utilizing authentic naive human VRC01-class BCRs validate a central tenet of germline-targeting vaccine design and extend the overall concept of the reverse vaccinology approach to vaccine development.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos/genética , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/farmacología , Antígenos CD4/inmunología , Técnicas de Sustitución del Gen/métodos , Centro Germinal/inmunología , Antígenos VIH , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Ratones , Ratones Endogámicos , Ratones Transgénicos , Células Precursoras de Linfocitos B/inmunología , Vacunación/métodos
3.
Nature ; 461(7260): 91-4, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19672243

RESUMEN

Recent landmark experiments have shown that transient overexpression of a small number of transcription factors can reprogram differentiated cells into induced pluripotent stem (iPS) cells that resemble embryonic stem (ES) cells. These iPS cells hold great promise for medicine because they have the potential to generate patient-specific cell types for cell replacement therapy and produce in vitro models of disease, without requiring embryonic tissues or oocytes. Although current iPS cell lines resemble ES cells, they have not passed the most stringent test of pluripotency by generating full-term or adult mice in tetraploid complementation assays, raising questions as to whether they are sufficiently potent to generate all of the cell types in an organism. Whether this difference between iPS and ES cells reflects intrinsic limitations of direct reprogramming is not known. Here we report fertile adult mice derived entirely from iPS cells that we generated by inducible genetic reprogramming of mouse embryonic fibroblasts. Producing adult mice derived entirely from a reprogrammed fibroblast shows that all features of a differentiated cell can be restored to an embryonic level of pluripotency without exposure to unknown ooplasmic factors. Comparing these fully pluripotent iPS cell lines to less developmentally potent lines may reveal molecular markers of different pluripotent states. Furthermore, mice derived entirely from iPS cells will provide a new resource to assess the functional and genomic stability of cells and tissues derived from iPS cells, which is important to validate their utility in cell replacement therapy and research applications.


Asunto(s)
Envejecimiento , Células Madre Pluripotentes/fisiología , Técnicas Reproductivas , Animales , Desdiferenciación Celular , Diferenciación Celular , Línea Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Madre Pluripotentes/citología , Embarazo , Tasa de Supervivencia
4.
Diabetes ; 65(8): 2134-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27207523

RESUMEN

An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22(R620W), is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22(R619W) mutation to the NOD genome would enhance the spontaneous development of T1D. We microinjected CRISPR-Cas9 and a homology-directed repair template into NOD single-cell zygotes to introduce the Ptpn22(R619W) mutation to its endogenous locus. The resulting Ptpn22(R619W) mice showed increased insulin autoantibodies and earlier onset and higher penetrance of T1D. This is the first report demonstrating enhanced T1D in a mouse modeling human PTPN22(R620W) and the utility of CRISPR-Cas9 for direct genetic alternation of NOD mice.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Alelos , Animales , Western Blotting , Sistemas CRISPR-Cas/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genoma/genética , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Neuron ; 89(6): 1223-1236, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26948891

RESUMEN

Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.


Asunto(s)
Clonación Molecular , Mutación/genética , Neuronas/fisiología , Análisis de Secuencia de ADN , Factores de Edad , Animales , Animales Recién Nacidos , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Cadherinas/metabolismo , División Celular/genética , Elementos Transponibles de ADN/genética , Embrión de Mamíferos , Femenino , Humanos , Antígeno Ki-67/metabolismo , Ratones , Ratones Transgénicos , Repeticiones de Microsatélite/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Transferencia Nuclear , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Oocitos/fisiología
6.
Cell Stem Cell ; 17(1): 101-15, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140606

RESUMEN

Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures.


Asunto(s)
Epigénesis Genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular , Reprogramación Celular , Metilación de ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Ratones Transgénicos , Retina/citología , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia
7.
J Vis Exp ; (69): e4003, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23222420

RESUMEN

The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution(2). Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types(2). This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications. The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)(3-5). Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage(6). Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line. Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC(1). These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs(3,4,7) and higher than that reported for most other iPSC lines(8-12). These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines(13-15). Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.


Asunto(s)
Células Madre Pluripotentes/citología , Animales , Técnicas Citológicas/métodos , Femenino , Ratones , Embarazo , Investigación con Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA