Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Data ; 10(1): 599, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684228

RESUMEN

The Soil Moisture Ocean Salinity (SMOS) was the first mission providing L-band multi-angular brightness temperature (TB) at the global scale. However, radio frequency interferences (RFI) and aliasing effects degrade, when present SMOS TBs, and thus affect the retrieval of land parameters. To alleviate this, a refined SMOS multi-angular TB dataset was generated based on a two-step regression approach. This approach smooths the TBs and reconstructs data at the incidence angle with large TB uncertainties. Compared with Centre Aval de Traitement des Données SMOS (CATDS) TB product, this dataset shows a better relationship with the Soil Moisture Active Passive (SMAP) TB and enhanced correlation with in-situ measured soil moisture. This RFI-suppressed SMOS TB dataset, spanning more than a decade (since 2010), is expected to provide opportunities for better retrieval of land parameters and scientific applications.

2.
Nat Ecol Evol ; 2(9): 1428-1435, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104750

RESUMEN

Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth. We find that seasonal variations in plant water storage are highly synchronous with leaf phenology for the boreal and temperate forests, but asynchronous for the tropical woodlands, where the seasonal development of plant water storage lags behind leaf area by up to 180 days. Contrasting patterns of the time lag between plant water storage and terrestrial groundwater storage are also evident in these ecosystems. A comparison of the water cycle components in seasonally dry tropical woodlands highlights the buffering effect of plant water storage on the seasonal dynamics of water supply and demand. Our results offer insights into ecosystem-scale plant water relations globally and provide a basis for an improved parameterization of eco-hydrological and Earth system models.


Asunto(s)
Ecosistema , Hojas de la Planta/metabolismo , Estaciones del Año , Agua/metabolismo , Imágenes Satelitales
3.
Nat Ecol Evol ; 2(5): 827-835, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632351

RESUMEN

The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016. L-VOD is shown not to saturate over densely vegetated areas. The overall net change in drylands (53% of the land area) was -0.05 petagrams of C per year (Pg C yr-1) associated with drying trends, and a net change of -0.02 Pg C yr-1 was observed in humid areas. These trends reflect a high inter-annual variability with a very dry year in 2015 (net change, -0.69 Pg C) with about half of the gross losses occurring in drylands. This study demonstrates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to weather variations, and second, the importance of the highly dynamic and vulnerable carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.


Asunto(s)
Ciclo del Carbono , Cambio Climático , África del Sur del Sahara , Biomasa , Microondas , Tecnología de Sensores Remotos , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA