Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2160-2175.e17, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37137306

RESUMEN

The serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation. Unfortunately, ibogaine's promiscuity and cardiotoxicity limit the understanding of inward-open state ligands. We docked over 200 million small molecules against the inward-open state of the SERT. Thirty-six top-ranking compounds were synthesized, and thirteen inhibited; further structure-based optimization led to the selection of two potent (low nanomolar) inhibitors. These stabilized an outward-closed state of the SERT with little activity against common off-targets. A cryo-EM structure of one of these bound to the SERT confirmed the predicted geometry. In mouse behavioral assays, both compounds had anxiolytic- and anti-depressant-like activity, with potencies up to 200-fold better than fluoxetine (Prozac), and one substantially reversed morphine withdrawal effects.


Asunto(s)
Ibogaína , Inhibidores Selectivos de la Recaptación de Serotonina , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Bibliotecas de Moléculas Pequeñas , Animales , Ratones , Fluoxetina/farmacología , Ibogaína/química , Ibogaína/farmacología , Conformación Molecular , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/ultraestructura , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Nature ; 610(7932): 582-591, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171289

RESUMEN

There is considerable interest in screening ultralarge chemical libraries for ligand discovery, both empirically and computationally1-4. Efforts have focused on readily synthesizable molecules, inevitably leaving many chemotypes unexplored. Here we investigate structure-based docking of a bespoke virtual library of tetrahydropyridines-a scaffold that is poorly sampled by a general billion-molecule virtual library but is well suited to many aminergic G-protein-coupled receptors. Using three inputs, each with diverse available derivatives, a one pot C-H alkenylation, electrocyclization and reduction provides the tetrahydropyridine core with up to six sites of derivatization5-7. Docking a virtual library of 75 million tetrahydropyridines against a model of the serotonin 5-HT2A receptor (5-HT2AR) led to the synthesis and testing of 17 initial molecules. Four of these molecules had low-micromolar activities against either the 5-HT2A or the 5-HT2B receptors. Structure-based optimization led to the 5-HT2AR agonists (R)-69 and (R)-70, with half-maximal effective concentration values of 41 nM and 110 nM, respectively, and unusual signalling kinetics that differ from psychedelic 5-HT2AR agonists. Cryo-electron microscopy structural analysis confirmed the predicted binding mode to 5-HT2AR. The favourable physical properties of these new agonists conferred high brain permeability, enabling mouse behavioural assays. Notably, neither had psychedelic activity, in contrast to classic 5-HT2AR agonists, whereas both had potent antidepressant activity in mouse models and had the same efficacy as antidepressants such as fluoxetine at as low as 1/40th of the dose. Prospects for using bespoke virtual libraries to sample pharmacologically relevant chemical space will be considered.


Asunto(s)
Antidepresivos , Pirrolidinas , Receptor de Serotonina 5-HT2A , Animales , Ratones , Antidepresivos/farmacología , Microscopía por Crioelectrón , Fluoxetina/administración & dosificación , Fluoxetina/farmacología , Alucinógenos/administración & dosificación , Alucinógenos/farmacología , Ligandos , Pirrolidinas/administración & dosificación , Pirrolidinas/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Bibliotecas de Moléculas Pequeñas
3.
Br J Anaesth ; 130(2): e370-e380, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778276

RESUMEN

BACKGROUND: Peripheral surgical trauma can trigger neuroinflammation and ensuing neurological complications, such as delirium. The mechanisms whereby surgery contributes to postoperative neuroinflammation remain unclear and without effective therapies. Here, we developed a microfluidic-assisted blood-brain barrier (BBB) device and tested the effects of omega-3 fatty acids on neuroimmune interactions after orthopaedic surgery. METHODS: A microfluidic-assisted BBB device was established using primary human cells. Tight junction proteins, vascular cell adhesion molecule 1 (VCAM-1), BBB permeability, and astrocytic networks were assessed after stimulation with interleukin (IL)-1ß and in the presence or absence of a clinically available omega-3 fatty acid emulsion (Omegaven®; Fresenius Kabi, Bad Homburg, Germany). Mice were treated 1 h before orthopaedic surgery with 10 µl g-1 body weight of omega-3 fatty acid emulsion i.v. or equal volumes of saline. Changes in pericytes, perivascular macrophages, BBB opening, microglial activation, and inattention were evaluated. RESULTS: Omega-3 fatty acids protected barrier permeability, endothelial tight junctions, and VCAM-1 after exposure to IL-1ß in the BBB model. In vivo studies confirmed that omega-3 fatty acid treatment inhibited surgery-induced BBB impairment, microglial activation, and delirium-like behaviour. We identified a novel role for pericyte loss and perivascular macrophage activation in mice after surgery, which were rescued by prophylaxis with i.v. omega-3 fatty acids. CONCLUSIONS: We present a new approach to study neuroimmune interactions relevant to perioperative recovery using a microphysiological BBB platform. Changes in barrier function, including dysregulation of pericytes and perivascular macrophages, provide new targets to reduce postoperative delirium.


Asunto(s)
Delirio del Despertar , Ácidos Grasos Omega-3 , Ratones , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Enfermedades Neuroinflamatorias , Emulsiones/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/metabolismo
4.
Hum Mol Genet ; 28(9): 1474-1486, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590535

RESUMEN

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Corto Plazo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Animales , Conducta Animal , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Marcación de Gen , Sitios Genéticos , Genotipo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Eliminación de Secuencia , Factores Sexuales
5.
FASEB J ; 34(11): 14750-14767, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910521

RESUMEN

Small ubiquitin-like modifier (SUMO1-3) conjugation (SUMOylation), a posttranslational modification, modulates almost all major cellular processes. Mounting evidence indicates that SUMOylation plays a crucial role in maintaining and regulating neural function, and importantly its dysfunction is implicated in cognitive impairment in humans. We have previously shown that simultaneously silencing SUMO1-3 expression in neurons negatively affects cognitive function. However, the roles of the individual SUMOs in modulating cognition and the mechanisms that link SUMOylation to cognitive processes remain unknown. To address these questions, in this study, we have focused on SUMO2 and generated a new conditional Sumo2 knockout mouse line. We found that conditional deletion of Sumo2 predominantly in forebrain neurons resulted in marked impairments in various cognitive tests, including episodic and fear memory. Our data further suggest that these abnormalities are attributable neither to constitutive changes in gene expression nor to alterations in neuronal morphology, but they involve impairment in dynamic SUMOylation processes associated with synaptic plasticity. Finally, we provide evidence that dysfunction on hippocampal-based cognitive tasks was associated with a significant deficit in the maintenance of hippocampal long-term potentiation in Sumo2 knockout mice. Collectively, these data demonstrate that protein conjugation by SUMO2 is critically involved in cognitive processes.


Asunto(s)
Memoria , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Cognición , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
6.
Alzheimers Dement ; 16(5): 734-749, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32291962

RESUMEN

OBJECTIVE: The present work evaluates the relationship between postoperative immune and neurovascular changes and the pathogenesis of surgery-induced delirium superimposed on dementia. BACKGROUND AND RATIONALE: Postoperative delirium is a common complication in many older adults and in patients with dementia including Alzheimer's disease (AD). The course of delirium can be particularly debilitating, while its pathophysiology remains poorly defined. HISTORICAL EVOLUTION: As of 2019, an estimated 5.8 million people of all ages have been diagnosed with AD, 97% of whom are >65 years of age. Each year, many of these patients require surgery. However, anesthesia and surgery can increase the risk for further cognitive decline. Surgery triggers neuroinflammation both in animal models and in humans, and a failure to resolve this inflammatory state may contribute to perioperative neurocognitive disorders as well as neurodegenerative pathology. UPDATED HYPOTHESIS: We propose an immunovascular hypothesis whereby dysregulated innate immunity negatively affects the blood-brain interface, which triggers delirium and thereby exacerbates AD neuropathology. EARLY EXPERIMENTAL DATA: We have developed a translational model to study delirium superimposed on dementia in APPSwDI/mNos2-/- AD mice (CVN-AD) after orthopedic surgery. At 12 months of age, CVN-AD showed distinct neuroimmune and vascular impairments after surgery, including acute microgliosis and amyloid-ß deposition. These changes correlated with attention deficits, a core feature of delirium-like behavior. FUTURE EXPERIMENTS AND VALIDATION STUDIES: Future research should determine the extent to which prevention of surgery-induced microgliosis and/or neurovascular unit dysfunction can prevent or ameliorate postoperative memory and attention deficits in animal models. Translational human studies should evaluate perioperative indices of innate immunity and neurovascular integrity and assess their potential link to perioperative neurocognitive disorders. MAJOR CHALLENGES FOR THE HYPOTHESIS: Understanding the complex relationships between delirium and dementia will require mechanistic studies aimed at evaluating the role of postoperative neuroinflammation and blood-brain barrier changes in the setting of pre-existing neurodegenerative and/or aging-related pathology. LINKAGE TO OTHER MAJOR THEORIES: Non-resolving inflammation with vascular disease that leads to cognitive impairments and dementia is increasingly important in risk stratification for AD in the aging population. The interdependence of these factors with surgery-induced neuroinflammation and cognitive dysfunction is also becoming apparent, providing a strong platform for assessing the relationship between postoperative delirium and longer term cognitive dysfunction in older adults.


Asunto(s)
Delirio/fisiopatología , Demencia/complicaciones , Inflamación , Complicaciones Posoperatorias , Animales , Barrera Hematoencefálica , Encéfalo/patología , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Humanos , Ratones , Trastornos Neurocognitivos
7.
J Neuroinflammation ; 16(1): 193, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660984

RESUMEN

BACKGROUND: Patients with pre-existing neurodegenerative disease commonly experience fractures that require orthopedic surgery. Perioperative neurocognitive disorders (PND), including delirium and postoperative cognitive dysfunction, are serious complications that can result in increased 1-year mortality when superimposed on dementia. Importantly, there are no disease-modifying therapeutic options for PND. Our lab developed the "broad spectrum" mixed-lineage kinase 3 inhibitor URMC-099 to inhibit pathological innate immune responses that underlie neuroinflammation-associated cognitive dysfunction. Here, we test the hypothesis that URMC-099 can prevent surgery-induced neuroinflammation and cognitive impairment. METHODS: Orthopedic surgery was performed by fracturing the tibia of the left hindlimb with intramedullary fixation under general anesthesia and analgesia. In a pilot experiment, 9-month-old mice were treated five times with URMC-099 (10 mg/kg, i.p.), spaced 12 h apart, with three doses prior to surgery and two doses following surgery. In this experiment, microgliosis was evaluated using unbiased stereology and blood-brain barrier (BBB) permeability was assessed using immunoglobulin G (IgG) immunostaining. In follow-up experiments, 3-month-old mice were treated only three times with URMC-099 (10 mg/kg, i.p.), spaced 12 h apart, prior to orthopedic surgery. Two-photon scanning laser microscopy and CLARITY with light-sheet microscopy were used to define surgery-induced changes in microglial dynamics and morphology, respectively. Surgery-induced memory impairment was assessed using the "What-Where-When" and Memory Load Object Discrimination tasks. The acute peripheral immune response to surgery was assessed by cytokine/chemokine profiling and flow cytometry. Finally, long-term fracture healing was assessed in fracture callouses using micro-computerized tomography (microCT) and histomorphometry analyses. RESULTS: Orthopedic surgery induced BBB disruption and microglial activation, but had no effect on microglial process motility. Surgically treated mice exhibited impaired object place and identity discrimination in the "What-Where-When" and Memory Load Object Discrimination tasks. Both URMC-099 dosing paradigms prevented the neuroinflammatory sequelae that accompanied orthopedic surgery. URMC-099 prophylaxis had no effect on the mobilization of the peripheral innate immune response and fracture healing. CONCLUSIONS: These findings show that prophylactic URMC-099 treatment is sufficient to prevent surgery-induced microgliosis and cognitive impairment without affecting fracture healing. Together, these findings provide compelling evidence for the advancement of URMC-099 as a therapeutic option for PND.


Asunto(s)
Disfunción Cognitiva/prevención & control , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Microglía/efectos de los fármacos , Atención Perioperativa , Piridinas/uso terapéutico , Pirroles/uso terapéutico , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Femenino , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Trastornos Neurocognitivos/tratamiento farmacológico , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Atención Perioperativa/métodos , Piridinas/farmacología , Pirroles/farmacología , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
8.
Proc Natl Acad Sci U S A ; 113(50): E8178-E8186, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911814

RESUMEN

The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed ß-arrestin2 (ßarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific ßarr2-KO mice, we show that the antipsychotic-like effects of a ßarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-ßarr2 signaling. Furthermore, ßarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of ßarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that ßarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies.


Asunto(s)
Antipsicóticos/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Arrestina beta 2/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Femenino , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Interneuronas/metabolismo , Ligandos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenciclidina/toxicidad , Transducción de Señal/efectos de los fármacos
9.
Nature ; 492(7428): 215-20, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23235874

RESUMEN

The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand-target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.


Asunto(s)
Diseño de Fármacos , Ligandos , Animales , Automatización , Sistemas de Liberación de Medicamentos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Fenómenos Farmacológicos , Reproducibilidad de los Resultados
10.
J Neurochem ; 143(3): 268-281, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28881029

RESUMEN

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Hipercinesia/inducido químicamente , Locomoción/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Anfetamina/farmacología , Animales , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuropéptidos , Núcleo Accumbens/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
11.
Neurobiol Dis ; 93: 137-45, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27168150

RESUMEN

Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.


Asunto(s)
Trastornos Distónicos/genética , Chaperonas Moleculares/genética , Mutación/genética , Plasticidad Neuronal/genética , Animales , Modelos Animales de Enfermedad , Distonía/genética , Ratones Transgénicos
12.
J Neurosci Res ; 94(6): 579-89, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26707710

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability among young adults and is highly prevalent among recently deployed military personnel. Survivors of TBI often experience cognitive and emotional deficits, suggesting that long-term effects of injury may disrupt neuronal function in critical brain regions, including the amygdala, which is involved in emotion and fear memory. Amygdala hyperexcitability has been reported in both TBI and posttraumatic stress disorder patients, yet little is known regarding the effects of combined stress and TBI on amygdala structure and function at the neuronal level. The present study seeks to determine how the long-term effects of preinjury foot-shock stress and TBI interact to influence synaptic plasticity in the lateral amygdala (LA) of adult male C57BL/6J mice by using whole-cell patch clamp electrophysiology 2-3 months postinjury. In the absence of stress, TBI resulted in a significant increase in membrane excitability and spontaneous excitatory postsynaptic currents (sEPSCs) in LA pyramidal-like neurons. Foot-shock stress in the absence of TBI also resulted in increased sEPSC activity. In contrast, when preinjury stress and TBI occurred in combination, sEPSC activity was significantly decreased compared with either condition alone. There were no significant differences in inhibitory activity or total dendritic length among any of the treatment groups. These results demonstrate that stress and TBI may be contributing to amygdala hyperexcitability via different mechanisms and that these pathways may counterbalance each other with respect to long-term pathophysiology in the LA.


Asunto(s)
Amígdala del Cerebelo/patología , Lesiones Traumáticas del Encéfalo/patología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Estrés Psicológico/patología , Amígdala del Cerebelo/fisiopatología , Análisis de Varianza , Animales , Biofisica , Dendritas/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrochoque/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Técnicas de Placa-Clamp , Estrés Psicológico/etiología
13.
Invest New Drugs ; 34(2): 149-58, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26728879

RESUMEN

D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel immunotoxin that reacts with wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFRvIII proteins overexpressed in glioblastomas. This study assessed the toxicity of intracerebral administration of D2C7-IT to support an initial Food and Drug Administration Investigational New Drug application. After the optimization of the formulation and administration, two cohorts (an acute and chronic cohort necropsied on study days 5 and 34) of Sprague-Dawley (SD) rats (four groups of 5 males and 5 females) were infused with the D2C7-IT formulation at total doses of 0, 0.05, 0.1, 0.4 µg (the acute cohort) and 0, 0.05, 0.1, 0.35 µg (the chronic cohort) for approximately 72 h by intracerebral convection-enhanced delivery using osmotic pumps. Mortality was observed in the 0.40 µg (5/10 rats) and 0.35 µg (4/10 rats) high-dose groups of each cohort. Body weight loss and abnormal behavior were only revealed in the rats treated with high doses of D2C7-IT. No dose-related effects were observed in clinical laboratory tests in either cohort. A gross pathologic examination of systemic tissues from the high-dose and control groups in both cohorts exhibited no dose-related or drug-related pathologic findings. Brain histopathology revealed the frequent occurrence of dose-related encephalomalacia, edema, and demyelination in the high-dose groups of both cohorts. In this study, the maximum tolerated dose of D2C7-IT was determined to be between 0.10 and 0.35 µg, and the no-observed-adverse-effect-level was 0.05 µg in SD rats. Both parameters were utilized to design the Phase I/II D2C7-IT clinical trial.


Asunto(s)
Convección , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/toxicidad , Inmunotoxinas/administración & dosificación , Inmunotoxinas/toxicidad , Anticuerpos de Cadena Única/administración & dosificación , Anticuerpos de Cadena Única/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Femenino , Concentración 50 Inhibidora , Inyecciones Intraventriculares , Masculino , Ratas Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 110(40): 16211-6, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043826

RESUMEN

Multiple peptide systems, including neuropeptide Y, leptin, ghrelin, and others, are involved with the control of food intake and body weight. The peptide LENSSPQAPARRLLPP (BigLEN) has been proposed to act through an unknown receptor to regulate body weight. In the present study, we used a combination of ligand-binding and receptor-activity assays to characterize a Gαi/o protein-coupled receptor activated by BigLEN in the mouse hypothalamus and Neuro2A cells. We then selected orphan G protein-coupled receptors expressed in the hypothalamus and Neuro2A cells and tested each for activation by BigLEN. G protein-coupled receptor 171 (GPR171) is activated by BigLEN, but not by the C terminally truncated peptide LittleLEN. The four C-terminal amino acids of BigLEN are sufficient to bind and activate GPR171. Overexpression of GPR171 leads to an increase, and knockdown leads to a decrease, in binding and signaling by BigLEN and the C-terminal peptide. In the hypothalamus GPR171 expression complements the expression of BigLEN, and its level and activity are elevated in mice lacking BigLEN. In mice, shRNA-mediated knockdown of hypothalamic GPR171 leads to a decrease in BigLEN signaling and results in changes in food intake and metabolism. The combination of GPR171 shRNA together with neutralization of BigLEN peptide by antibody absorption nearly eliminates acute feeding in food-deprived mice. Taken together, these results demonstrate that GPR171 is the BigLEN receptor and that the BigLEN-GPR171 system plays an important role in regulating responses associated with feeding and metabolism in mice.


Asunto(s)
Peso Corporal/fisiología , Conducta Alimentaria/fisiología , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Varianza , Animales , Western Blotting , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Proc Natl Acad Sci U S A ; 110(43): 17362-7, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101515

RESUMEN

PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Subtilisinas/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Western Blotting , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Flavanonas/farmacología , Expresión Génica , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Hipocampo/metabolismo , Humanos , Hibridación in Situ , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Noqueados , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subtilisinas/genética
16.
Ann Rheum Dis ; 74(11): 2076-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25015373

RESUMEN

OBJECTIVE: The mechanisms linking obesity and osteoarthritis (OA) are not fully understood and have been generally attributed to increased weight, rather than metabolic or inflammatory factors. Here, we examined the influence of fatty acids, adipokines, and body weight on OA following joint injury in an obese mouse model. METHODS: Mice were fed high-fat diets rich in various fatty acids (FA) including saturated FAs (SFAs), ω-6 polyunsaturated FAs (PUFAs), and ω-3 PUFAs. OA was induced by destabilising the medial meniscus. Wound healing was evaluated using an ear punch. OA, synovitis and wound healing were determined histologically, while bone changes were measured using microCT. Activity levels and serum cytokines were measured at various time-points. Multivariate models were performed to elucidate the associations of dietary, metabolic and mechanical factors with OA and wound healing. RESULTS: Using weight-matched mice and multivariate models, we found that OA was significantly associated with dietary fatty acid content and serum adipokine levels, but not with body weight. Furthermore, spontaneous activity of the mice was independent of OA development. Small amounts of ω-3 PUFAs (8% by kcal) in a high-fat diet were sufficient to mitigate injury-induced OA, decreasing leptin and resistin levels. ω-3 PUFAs significantly enhanced wound repair, SFAs or ω-6 PUFAs independently increased OA severity, heterotopic ossification and scar tissue formation. CONCLUSIONS: Our results indicate that with obesity, dietary FA content regulates wound healing and OA severity following joint injury, independent of body weight, supporting the need for further studies of dietary FA supplements as a potential therapeutic approach for OA.


Asunto(s)
Huesos/efectos de los fármacos , Pabellón Auricular/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Traumatismos de la Pierna/patología , Osteoartritis/patología , Rodilla de Cuadrúpedos/efectos de los fármacos , Sinovitis/patología , Cicatrización de Heridas/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Huesos/diagnóstico por imagen , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Pabellón Auricular/lesiones , Pabellón Auricular/patología , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Traumatismos de la Pierna/complicaciones , Leptina/metabolismo , Ratones , Obesidad/complicaciones , Osteoartritis/diagnóstico por imagen , Osteoartritis/etiología , Osteoartritis de la Rodilla , Resistina/metabolismo , Rodilla de Cuadrúpedos/diagnóstico por imagen , Rodilla de Cuadrúpedos/lesiones , Rodilla de Cuadrúpedos/patología , Sinovitis/diagnóstico por imagen , Sinovitis/etiología , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Lesiones de Menisco Tibial , Microtomografía por Rayos X
17.
Epilepsia ; 56(1): 82-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25523819

RESUMEN

OBJECTIVES: Mutations in the ATP1α3 subunit of the neuronal Na+/K+-ATPase are thought to be responsible for seizures, hemiplegias, and other symptoms of alternating hemiplegia of childhood (AHC). However, the mechanisms through which ATP1A3 mutations mediate their pathophysiologic consequences are not yet understood. The following hypotheses were investigated: (1) Our novel knock-in mouse carrying the most common heterozygous mutation causing AHC (D801N) will exhibit the manifestations of the human condition and display predisposition to seizures; and (2) the underlying pathophysiology in this mouse model involves increased excitability in response to electrical stimulation of Schaffer collaterals and abnormal predisposition to spreading depression (SD). METHODS: We generated the D801N mutant mouse (Mashlool, Mashl+/-) and compared mutant and wild-type (WT) littermates. Behavioral tests, amygdala kindling, flurothyl-induced seizure threshold, spontaneous recurrent seizures (SRS), and other paroxysmal activities were compared between groups. In vitro electrophysiologic slice experiments on hippocampus were performed to assess predisposition to hyperexcitability and SD. RESULTS: Mutant mice manifested a distinctive phenotype similar to that of humans with AHC. They had abnormal impulsivity, memory, gait, motor coordination, tremor, motor control, endogenous nociceptive response, paroxysmal hemiplegias, diplegias, dystonias, and SRS, as well as predisposition to kindling, to flurothyl-induced seizures, and to sudden unexpected death. Hippocampal slices of mutants, in contrast to WT animals, showed hyperexcitable responses to 1 Hz pulse-trains of electrical stimuli delivered to the Schaffer collaterals and had significantly longer duration of K+-induced SD responses. SIGNIFICANCE: Our model reproduces the major characteristics of human AHC, and indicates that ATP1α3 dysfunction results in abnormal short-term plasticity with increased excitability (potential mechanism for seizures) and a predisposition to more severe SD responses (potential mechanism for hemiplegias). This model of the human condition should help in understanding the molecular pathways underlying these phenotypes and may lead to identification of novel therapeutic strategies of ATP1α3 related disorders and seizures.


Asunto(s)
Conducta Animal , Encéfalo/fisiopatología , Hemiplejía/fisiopatología , Convulsiones/fisiopatología , Amígdala del Cerebelo/fisiopatología , Animales , Convulsivantes , Modelos Animales de Enfermedad , Electroencefalografía , Fenómenos Electrofisiológicos , Flurotilo , Técnicas de Sustitución del Gen , Hemiplejía/genética , Excitación Neurológica/fisiología , Aprendizaje , Locomoción , Memoria , Ratones , Ratones Transgénicos , Convulsiones/inducido químicamente , ATPasa Intercambiadora de Sodio-Potasio/genética
18.
J Psychiatry Neurosci ; 39(4): 259-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24690371

RESUMEN

BACKGROUND: Growing evidence suggests that small ubiquitin-like modifier (SUMO) conjugation plays a key role in brain plasticity by modulating activity-dependent synaptic transmission. However, these observations are based largely on cell culture experiments. We hypothesized that episodic and fear memories would be affected by silencing SUMO1-3 expression. METHODS: To investigate the role of SUMO conjugation in neuronal functioning in vivo, we generated a novel Sumo transgenic mouse model in which a Thy1 promoter drives expression of 3 distinct microRNAs to silence Sumo1-3 expression, specifically in neurons. Wild-type and Sumo1-3 knockdown mice were subjected to a battery of behavioural tests to elucidate whether Sumoylation is involved in episodic and emotional memory. RESULTS: Expression of Sumo1-3 microRNAs and the corresponding silencing of Sumo expression were particularly pronounced in hippocampal, amygdala and layer V cerebral cortex neurons. The Sumo knockdown mice displayed anxiety-like responses and were impaired in episodic memory processes, contextual and cued fear conditioning and fear-potentiated startle. LIMITATIONS: Since expression of Sumo1-3 was silenced in this mouse model, we need to verify in future studies which of the SUMO paralogues play the pivotal role in episodic and emotional memory. CONCLUSION: Our results indicate that a functional SUMO conjugation pathway is essential for emotionality and cognition. This novel Sumo knockdown mouse model and the technology used in generating this mutant may help to reveal novel mechanisms that underlie a variety of neuropsychiatric conditions associated with anxiety and impairment of episodic and emotional memory.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Ansiedad/fisiopatología , Encéfalo/fisiopatología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Emociones/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Pruebas Neuropsicológicas , Reflejo de Sobresalto/fisiología
19.
Hum Mol Genet ; 20(15): 3093-108, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558424

RESUMEN

SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Small microdeletions and point mutations in SHANK3 have been identified in a small subgroup of individuals with autism spectrum disorder (ASD) and intellectual disability. SHANK3 also plays a key role in the chromosome 22q13.3 microdeletion syndrome (Phelan-McDermid syndrome), which includes ASD and cognitive dysfunction as major clinical features. To evaluate the role of Shank3 in vivo, we disrupted major isoforms of the gene in mice by deleting exons 4-9. Isoform-specific Shank3(e4-9) homozygous mutant mice display abnormal social behaviors, communication patterns, repetitive behaviors and learning and memory. Shank3(e4-9) male mice display more severe impairments than females in motor coordination. Shank3(e4-9) mice have reduced levels of Homer1b/c, GKAP and GluA1 at the PSD, and show attenuated activity-dependent redistribution of GluA1-containing AMPA receptors. Subtle morphological alterations in dendritic spines are also observed. Although synaptic transmission is normal in CA1 hippocampus, long-term potentiation is deficient in Shank3(e4-9) mice. We conclude that loss of major Shank3 species produces biochemical, cellular and morphological changes, leading to behavioral abnormalities in mice that bear similarities to human ASD patients with SHANK3 mutations.


Asunto(s)
Proteínas Portadoras/metabolismo , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Conducta Animal/fisiología , Proteínas Portadoras/genética , Femenino , Proteínas de Andamiaje Homer , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Ratones , Proteínas de Microfilamentos , Actividad Motora/genética , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/genética , ARN Mensajero/genética , Proteínas Asociadas a SAP90-PSD95 , Transmisión Sináptica/genética
20.
Int J Neuropsychopharmacol ; 16(7): 1623-34, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23442571

RESUMEN

Cpe(fat/fat) mice have a point mutation in carboxypeptidase E (Cpe), an exopeptidase that removes C-terminal basic amino acids from intermediates to produce bioactive peptides. The mutation renders the enzyme inactive and unstable. The absence of Cpe activity in these mutants leads to abnormal processing of many peptides, with elevated levels of intermediates and greatly reduced levels of the mature peptides. Cpe(fat/fat) mice develop obesity, diabetes and infertility in adulthood. We examined whether anxiety- and/or depressive-like behaviours are also present. Anxiety-like responses are not evident in young Cpe(fat/fat) mice (∼60 d), but appear in older animals (>90 d). These behaviours are reversed by acute treatment with diazepam or fluoxetine. In contrast, increased immobilities in forced swim and tail suspension are evident in all age groups examined. These behaviours are reversed by acute administration of reboxetine. In comparison acute treatments with fluoxetine or bupropion are ineffective; however, immobility times are normalized with 2 wk treatment. These data demonstrate that Cpe(fat/fat) mice display depressive-like responses aged ∼60 d, whereas anxiety-like behaviours emerge ∼1 month later. In tail suspension, the reboxetine findings show that noradrenergic actions of antidepressants are intact in Cpe(fat/fat) mice. The ability of acute fluoxetine treatment to rescue anxiety-like while leaving depressive-like responses unaffected suggests that serotonin mechanisms underlying these behaviours are different. Since depressive-like responses in the Cpe(fat/fat) mice are rescued by 2 wk, but not acute, treatment with fluoxetine or bupropion, these mice may serve as a useful model that resembles human depression.


Asunto(s)
Ansiedad/etiología , Carboxipeptidasa H/genética , Depresión/etiología , Obesidad/complicaciones , Factores de Edad , Análisis de Varianza , Animales , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Depresión/tratamiento farmacológico , Depresión/genética , Diazepam/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Suspensión Trasera/métodos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Morfolinas/uso terapéutico , Actividad Motora/efectos de los fármacos , Obesidad/genética , Mutación Puntual/genética , Reboxetina , Natación/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA