Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Fish Shellfish Immunol ; 131: 1051-1062, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371050

RESUMEN

Spring viremia of carp (SVC) remains as a vaccine orphan disease mostly affecting juvenile specimens. Young fish are especially difficult to vaccinate and oral administration of vaccine combined with food would be the election system to minimise stress and the vaccination costs associated to injection. However, administration of prophylactics with food pellets faces off several drawbacks mainly related with vaccine degradation and weak protection correlates of oral vaccines. Here we present a platform based on recombinant proteins (subunit vaccines) manufactured as highly resistant nanostructured materials, and providing excellent levels of protection against SVC virus in a preliminary i.p injection challenge. The G3 domain of SVCV glycoprotein G was overexpressed in E. coli together with IFNγ and the modular protein was purified from bacterial aggregates (inclusion bodies) as highly organised nanostructured biomaterial (nanopellets, NP). These SVCV-IFNNP were taken up by zebrafish cells leading to the enhanced expression of different antiviral and IFN markers (e.g vig1, mx, lmp2 or ifngr1 among others) in zebrafish liver cells (ZFL). To monitor if SVCVNP and SVCV-IFNNP can be taken up by intestinal epithelia and can induce antiviral response we performed experiments with SVCVNP and SVCV-IFNNP in 3 days post fertilization (dpf) zebrafish larvae. Both, SVCVNP and SVCV-IFNNP were taken up and accumulated in the intestine without signs of toxicity. The antiviral response in larvae showed a different induction pattern: SVCV-IFNNP did not induce an antiviral response while SVCVNP showed a good antiviral induction. Interestingly ZF4, an embryonic derived cell line, showed an antiviral response like ZFL cells, although the lmp2 and ifngr1 (markers of the IFNγ response) were not overexpressed. Experiments with adult zebrafish indicated an excellent level of protection against a SVCV model infection where SVCV-IFNNP vaccinated fish reached 20% cumulative mortality while control fish reached over 80% cumulative mortality.


Asunto(s)
Carpas , Enfermedades de los Peces , Nanopartículas , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Pez Cebra , Viremia , Antivirales/uso terapéutico , Escherichia coli , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/tratamiento farmacológico , Vacunas de Subunidad
2.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769254

RESUMEN

One of the challenges of science in disease prevention is optimizing drug and vaccine delivery. Until now, many strategies have been employed in this sector, but most are quite complex and labile. To overcome these limitations, great efforts are directed to coupling drugs to carriers, either of natural or synthetic origin. Among the most studied cell carriers are antigen-presenting cells (APCs), however, red blood cells (RBCs) are positioned as attractive carriers in drug delivery due to their abundance and availability in the body. Furthermore, fish RBCs have a nucleus and have been shown to have a strong involvement in modulating the immune response. In this study, we evaluated the binding of three peptides to rainbow trout RBCs, two lectin-like peptides and another derived from Plasmodium falciparum membrane protein, in order to take advantage of this peptide-RBCs binding to generate tools to improve the specificity, efficacy, immunostimulatory effect, and safety of the antiviral therapeutic or prophylactic administration systems currently used.


Asunto(s)
Antivirales/química , Sistemas de Liberación de Medicamentos , Eritrocitos/química , Proteínas de Peces/química , Lectinas/química , Oncorhynchus mykiss , Péptidos/química , Animales
3.
Fish Shellfish Immunol ; 99: 578-586, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32105827

RESUMEN

Nervous necrosis virus (NNV) reassortant strains RGNNV/SJNNV have emerged as a potent threat to the Mediterranean marine aquaculture industry, causing viral encephalopathy and retinopathy (VER) in Senegalese sole (Solea senegalensis). In this study, a cheap and practical vaccine strategy using bacterial inclusion bodies made of the coat protein of a virulent reassortant strain of this betanodavirus was devised. The nanostructured recombinant protein nanoparticles, VNNV-CNP, were administered without adjuvant to two groups of juvenile sole, one by intraperitoneal injection and the other by oral intubation. Specific antibodies were raised in vivo against the NNV coat protein via both routes, with a substantial specific antibody expansion in the injected group 30 days post homologous prime boost. Expression levels of five adaptive immune-related genes, cd8a, cd4, igm, igt and arg2, were also quantified in intestine, spleen and head kidney. Results showed cd4 and igm were upregulated in the head kidney of injected fish, indicating activation of an adaptive systemic response, while intubated fish exhibited a mucosal response in the intestine. Neither route showed significant differential expression of cd8a. The specific antibody response elicited in vivo and the lack of any signs of toxicity over the 6-week study period in young fish (n = 100), evidences the potential of the nanoparticle as a vaccine candidate.


Asunto(s)
Proteínas de la Cápside/inmunología , Peces Planos/inmunología , Nanoestructuras/administración & dosificación , Infecciones por Virus ARN/veterinaria , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Acuicultura , Proteínas de la Cápside/administración & dosificación , Femenino , Enfermedades de los Peces/prevención & control , Riñón Cefálico/inmunología , Inmunidad Mucosa , Masculino , Nodaviridae , Infecciones por Virus ARN/prevención & control , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Vacunas Virales/administración & dosificación
4.
Fish Shellfish Immunol ; 92: 421-429, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31195115

RESUMEN

Here we present immunostimulant-loaded nanoliposomes (NLc) as a strategy to protect zebrafish larvae against bacterial infection. The NLc encapsulate crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid (Poly I:C), a synthetic analogue of viral dsRNA. Fluorescently-labeled NLc were ingested by zebrafish larvae 4 days post fertilization, when administrated by bath immersion, and accumulated in the intestine. RT-qPCR analysis showed the expression of innate immune related genes (tnfα, il1ß, nos2a, irf1a and ptgs2a) was significantly upregulated at 48 h post NLc treatment. A zebrafish larvae infection model for Aeromonas hydrophila was set up by bath immersion, achieving bacterial-dose-dependent significant differences in survival at day 5 post infection in both injured and non-injured larvae. Using this model, NLc protected non-injured zebrafish larvae against an A. hydrophila lethal infection. In contrast, neither the empty nanoliposomes nor the mixture of immunostimulants could protect larvae against lethal challenges. Our results demonstrate that nanoliposomes could be further developed as an efficient carrier, widening the scope for delivery of other immunostimulants in aquaculture.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Enfermedades de los Peces/inmunología , Inmunidad Innata/efectos de los fármacos , Liposomas/farmacología , Pez Cebra/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Aeromonas hydrophila/fisiología , Animales , Escherichia coli/química , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Lipopolisacáridos/farmacología , Liposomas/administración & dosificación , Liposomas/inmunología , Nanopartículas/administración & dosificación , Poli I-C/farmacología , Pez Cebra/crecimiento & desarrollo
5.
J Biol Chem ; 289(49): 33783-96, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25294878

RESUMEN

Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic ß-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases.


Asunto(s)
Amiloide/química , Prealbúmina/química , Proteínas/química , Secuencia de Aminoácidos , Amiloide/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Prealbúmina/genética , Prealbúmina/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
6.
Chemistry ; 21(6): 2508-18, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25504892

RESUMEN

Metal-organic frameworks (MOFs) are among the most attractive porous materials available today. They have garnered much attention for their potential utility in many different areas such as gas storage, separation, catalysis, and biomedicine. However, very little is known about the possible health or environmental risks of these materials. Here, the results of toxicity studies on sixteen representative uncoated MOF nanoparticles (nanoMOFs), which were assessed for cytotoxicity to HepG2 and MCF7 cells in vitro, and for toxicity to zebrafish embryos in vivo, are reported. Interestingly, there is a strong correlation between their in vitro toxicity and their in vivo toxicity. NanoMOFs were ranked according to their respective in vivo toxicity (in terms of the amount and severity of phenotypic changes observed in the treated zebrafish embryos), which varied widely. Altogether these results show different levels of toxicity of these materials; however, leaching of solubilized metal ions plays a main role.

7.
J Bacteriol ; 196(13): 2431-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769700

RESUMEN

The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC-RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ΔrpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC-RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ΔrpfC mutant of the RpfC-RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC-RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC-RpfF-2 strain has no significant effect on these virulence-related phenotypes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Familia de Multigenes , Stenotrophomonas maltophilia/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Citocinas/genética , Variación Genética , Genoma Bacteriano , Datos de Secuencia Molecular , Mutación , Filogenia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/patogenicidad , Virulencia
8.
Front Immunol ; 15: 1346512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352881

RESUMEN

Self-assembling protein nanoparticles are used as a novel vaccine design platform to improve the stability and immunogenicity of safe subunit vaccines, while providing broader protection against viral infections. Infectious Hematopoietic Necrosis virus (IHNV) is the causative agent of the WOAH-listed IHN diseases for which there are currently no therapeutic treatments and no globally available commercial vaccine. In this study, by genetically fusing the virus glycoprotein to the H. pylori ferritin as a scaffold, we constructed a self-assembling IHNV nanovaccine (FerritVac). Despite the introduction of an exogenous fragment, the FerritVac NPs show excellent stability same as Ferritin NPs under different storage, pH, and temperature conditions, mimicking the harsh gastrointestinal condition of the virus main host (trout). MTT viability assays showed no cytotoxicity of FerritVac or Ferritin NPs in zebrafish cell culture (ZFL cells) incubated with different doses of up to 100 µg/mL for 14 hours. FerritVac NPs also upregulated expression of innate antiviral immunity, IHNV, and other fish rhabdovirus infection gene markers (mx, vig1, ifit5, and isg-15) in the macrophage cells of the host. In this study, we demonstrate the development of a soluble recombinant glycoprotein of IHNV in the E. coli system using the ferritin self-assembling nanoplatform, as a biocompatible, stable, and effective foundation to rescue and produce soluble protein and enable oral administration and antiviral induction for development of a complete IHNV vaccine. This self-assembling protein nanocages as novel vaccine approach offers significant commercial potential for non-mammalian and enveloped viruses.


Asunto(s)
Virus de la Necrosis Hematopoyética Infecciosa , Vacunas Virales , Animales , Virus de la Necrosis Hematopoyética Infecciosa/genética , Ferritinas/genética , Escherichia coli , Pez Cebra , Glicoproteínas/genética
9.
Proc Biol Sci ; 280(1766): 20131381, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23843398

RESUMEN

Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene-environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity-environment interactions are likely to be under strong positive selection.


Asunto(s)
Conducta Animal , Inmunidad Innata , Temperatura , Pez Cebra/fisiología , Animales , Encéfalo/inmunología , Encéfalo/fisiología , Encéfalo/virología , ARN Mensajero/metabolismo , Transducción de Señal , Transcriptoma , Regulación hacia Arriba , Pez Cebra/inmunología , Pez Cebra/virología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
ACS Appl Mater Interfaces ; 15(33): 39167-39175, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37614001

RESUMEN

Among bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs.


Asunto(s)
COVID-19 , Contención de Riesgos Biológicos , Animales , Humanos , Preparaciones de Acción Retardada/farmacología , SARS-CoV-2 , Prótesis e Implantes , Modelos Animales de Enfermedad
11.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004610

RESUMEN

Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium Stenotrophomonas maltophilia, proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.

12.
Biol Reprod ; 86(1): 1-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21880947

RESUMEN

In fish, like in other vertebrates, luteinizing hormone (Lh) is an essential hormone for the completion of oocyte maturation. In salmonid fish (i.e., salmon and trout), oocyte maturation is induced by Lh through its stimulation of the production of the maturation-inducing steroid, 17alpha,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In mammals, several factors, including ovarian cytokines and growth factors, have been reported to contribute to the regulation of oocyte maturation. In fish, growing evidence suggests that tumor necrosis factor alpha (hereafter referred to as Tnf) could play multiple physiological roles in the control of ovarian function. In the present study, we have investigated the possible involvement of Tnf in the regulation of oocyte maturation in brown trout (Salmo trutta). Our results show that in vitro treatment of brown trout preovulatory follicles with coho salmon (Oncorhynchus kisutch) Lh (sLh) significantly increased oocyte maturation, as assessed by germinal vesicle breakdown (GVBD), and that this effect was blocked by TAPI-1 (an inhibitor of Tnf-converting enzyme or Tace/Adam17). Furthermore, treatment of preovulatory follicles with sLh increased the expression of tnf and tace/adam17 as well as the secretion of the Tnf protein. Importantly, recombinant trout Tnf (rtTnf) significantly increased GVBD in vitro. Our results also show that the stimulatory effects of rtTnf on oocyte maturation may be the result of the direct involvement of rtTnf in stimulating the production of the maturation-inducing steroid as evidenced, first, by the stimulatory effects of rtTnf on 17,20beta-P production in vitro and on the expression of cholesterol side-chain cleavage P450 cytochrome (p450scc) and 20beta-hydroxysteroid dehydrogenase/carbonyl reductase 1 (cbr1), the enzyme responsible for the production of 17,20beta-P, and, second, by the ability of TAPI-1 to block the stimulatory effects of sLh on 17,20beta-P production and cbr1 expression. Furthermore, sLh and rtTnf increased the expression of the Lh receptor (lhr) and decreased the expression of aromatase (cyp19a1), and TAPI-1 completely blocked the effects of sLh. These results strongly suggest that Tnf may contribute to the regulation of oocyte maturation by Lh in trout.


Asunto(s)
Hormona Luteinizante/fisiología , Oocitos/fisiología , Ovario/fisiología , Trucha/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Oocitos/citología , Factor de Necrosis Tumoral alfa/metabolismo
13.
RSC Adv ; 12(49): 31878-31888, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380961

RESUMEN

Mesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in nanomedicine as imaging and therapeutic carriers. Most of these studies focused on spherical particles. In contrast, mesoporous silica rods (MSR) that are more challenging to prepare have been less investigated in terms of toxicity, cellular uptake, or biodistribution. Interestingly, previous studies showed that silica rods penetrate fibrous tissues or mucus layers more efficiently than their spherical counterparts. Recently, we reported the synthesis of MSR with distinct aspect ratios and validated their use in multiple imaging modalities by loading the pores with maghemite nanocrystals and functionalizing the silica surface with green and red fluorophores. Herein, based on an initial hypothesis of high liver accumulation of the MSR and a future vision that they could be used for early diagnosis or therapy in fibrotic liver diseases; the cytotoxicity and cellular uptake of MSR were assessed in zebrafish liver (ZFL) cells and the in vivo safety and biodistribution was investigated via fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) employing zebrafish larvae and rodents. The selection of these animal models was prompted by the well-established fatty diet protocols inducing fibrotic liver in zebrafish or rodents that serve to investigate highly prevalent liver conditions such as non-alcoholic fatty liver disease (NAFLD). Our study demonstrated that magnetic MSR do not cause cytotoxicity in ZFL cells regardless of the rods' length and surface charge (for concentrations up to 50 µg ml-1, 6 h) and that MSR are taken up by the ZFL cells in large amounts despite their length of ∼1 µm. In zebrafish larvae, it was observed that they could be safely exposed to high MSR concentrations (up to 1 mg ml-1 for 96 h) and that the rods pass through the liver without causing toxicity. The high accumulation of MSR in rodents' livers at short post-injection times (20% of the administered dose) was confirmed by both FMI and MRI, highlighting the utility of the MSR for liver imaging by both techniques. Our results could open new avenues for the use of rod-shaped silica particles in the diagnosis of pathological liver conditions.

14.
ACS Appl Nano Mater ; 5(2): 2113-2125, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35252779

RESUMEN

Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 µm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 µg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.

15.
Am J Physiol Regul Integr Comp Physiol ; 300(3): R716-23, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21191000

RESUMEN

The proinflammatory cytokine TNF-α is known to have a direct action on skeletal muscle in mammals. However, little is known regarding the potential effects of cytokines on nonimmune tissues, particularly in skeletal muscle, in fish. The aim of this study was to investigate the effects of recombinant trout TNF-α (rtTNF-α) on skeletal muscle carbohydrate metabolism in rainbow trout (Oncorhynchus mykiss). We used a primary cell culture of muscle cells from rainbow trout to show that rtTNF-α stimulates glucose uptake in myoblasts and myotubes at concentrations that do not affect the viability of the cells, requiring de novo protein synthesis as shown by the impairment of rtTNF-α-stimulated glucose uptake by cycloheximide. With the use of specific inhibitors, we show that rtTNF-α-stimulated glucose uptake is mediated by the p38MAPK, NF-κB, and JNK pathways. Additionally, we provide evidence that the stimulatory effects of rtTNF-α on glucose uptake in trout skeletal muscle cells may be caused, at least in part, by an increase in the amount of GLUT4 at the plasma membrane. Incubation of trout muscle cells with conditioned medium from LPS-stimulated trout macrophages, enriched in TNF-α, increased glucose uptake. Our results indicate that recombinant, as well as native trout TNF-α, directly stimulates glucose uptake in trout muscle cells and provide evidence, for the first time in nonmammalian vertebrates, for a potential regulatory role of TNF-α in skeletal muscle metabolism.


Asunto(s)
Desoxiglucosa/metabolismo , Proteínas de Peces/metabolismo , Músculo Esquelético/metabolismo , Oncorhynchus mykiss/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/inmunología , Comunicación Paracrina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Proteínas Recombinantes/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/inmunología , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
ACS Sustain Chem Eng ; 9(36): 12341-12354, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34603855

RESUMEN

We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.

17.
Reprod Biol Endocrinol ; 8: 34, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20385004

RESUMEN

BACKGROUND: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). METHODS: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. RESULTS: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. CONCLUSIONS: In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.


Asunto(s)
Ovulación/genética , Trucha/genética , Trucha/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Femenino , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Lipopolisacáridos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Ovulación/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
18.
Front Immunol ; 10: 1055, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178858

RESUMEN

Fish Red-Blood Cells (RBCs) are nucleated cells that can modulate the expression of different sets of genes in response to stimuli, playing an active role in the homeostasis of the fish immune system. Nowadays, vaccination is one of the main ways to control and prevent viral diseases in aquaculture and the development of novel vaccination approaches is a focal point in fish vaccinology. One of the strategies that has recently emerged is the use of nanostructured recombinant proteins. Nanostructured cytokines have already been shown to immunostimulate and protect fish against bacterial infections. To explore the role of RBCs in the immune response to two nanostructured recombinant proteins, TNFα and a G-VHSV protein fragment, we performed different in vitro and in vivo studies. We show for the first time that rainbow trout RBCs are able to endocytose nanostructured TNFα and G-VHSV protein fragment in vitro, despite not being phagocytic cells, and in response to nanostructured TNFα and G-VHSV fragment, the expression of different immune genes could be modulated.


Asunto(s)
Endocitosis , Eritrocitos/fisiología , Cuerpos de Inclusión/inmunología , Oncorhynchus mykiss/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Células Cultivadas , Regulación de la Expresión Génica , Proteínas Recombinantes/inmunología
19.
Endocrinology ; 149(4): 1880-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18162526

RESUMEN

TNFalpha is a proinflammatory cytokine secreted by macrophages in response to bacterial infection. Recently new evidence has emerged suggesting that stressed or injured myocytes produce TNFalpha that then acts as an autocrine and/or paracrine mediator. TNFalpha receptors types 1 and 2 are present in skeletal muscle cells, and muscle cells can secrete, in addition to TNFalpha, other cytokines such as IL-1beta or IL-6. Furthermore, the plasma concentration of TNFalpha is elevated in insulin-resistant states associated with obesity and type 2 diabetes. Here we show that TNFalpha increased the amount of glucose transporter (GLUT)-4 at the plasma membrane and also glucose uptake in the L6 muscle cell line stably expressing GLUT4 tagged with the c-myc epitope. Regardless of the state of differentiation of the L6 cells, TNFalpha did not affect the rate of proliferation or of apoptosis. The stimulatory effects of TNFalpha on cell surface GLUT4 and glucose uptake were blocked by nuclear factor-kappaB and p38MAPK pathway specific inhibitors (Bay 11-7082 and SB220025), and these two pathways were stimulated by TNFalpha. Furthermore, although TNFalpha increased IL-6 mRNA and protein expression, IL-6 did not mediate the effects of TNFalpha on cell surface GLUT4 levels, which also did not require de novo protein synthesis. The results indicate that TNFalpha can stimulate glucose uptake in L6 muscle cells by inducing GLUT4 translocation to the plasma membrane, possibly through activation of the nuclear factor-kappaB and p38MAPK signaling pathways and independently of the production of IL-6.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Interleucina-6/fisiología , Músculo Esquelético/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glucosa/metabolismo , Insulina/farmacología , Interleucina-6/genética , Mioblastos Esqueléticos/metabolismo , FN-kappa B/fisiología , ARN Mensajero/análisis , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
20.
BMC Genomics ; 9: 141, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18366750

RESUMEN

BACKGROUND: The response of the trout, O. mykiss, head kidney to bacterial lipopolysaccharide (LPS) or active and attenuated infectious hematopoietic necrosis virus (IHNV and attINHV respectively) intraperitoneal challenge, 24 and 72 hours post-injection, was investigated using a salmonid-specific cDNA microarray. RESULTS: The head kidney response to i.p. LPS-induced inflammation in the first instance displays an initial stress reaction involving suppression of major cellular processes, including immune function, followed by a proliferative hematopoietic-type/biogenesis response 3 days after administration. The viral response at the early stage of infection highlights a suppression of hematopoietic and protein biosynthetic function and a stimulation of immune response. In fish infected with IHNV a loss of cellular function including signal transduction, cell cycle and transcriptional activity 72 hours after infection reflects the tissue-specific pathology of IHNV infection. attIHNV treatment on the other hand shows a similar pattern to native IHNV infection at 24 hours however at 72 hours a divergence from the viral response is seen and replace with a recovery response more similar to that observed for LPS is observed. CONCLUSION: In conclusion we have been able to identify and characterise by transcriptomic analysis two different types of responses to two distinct immune agents, a virus, IHNV and a bacterial cell wall component, LPS and a 'mixed' response to an attenuated IHNV. This type of analysis will lead to a greater understanding of the physiological response and the development of effective immune responses in salmonid fish to different pathogenic and pro-inflammatory agents.


Asunto(s)
Enfermedades de los Peces/genética , Perfilación de la Expresión Génica , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad , Riñón/metabolismo , Oncorhynchus mykiss/genética , Enfermedad Aguda , Animales , Línea Celular , Matriz Extracelular/genética , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/virología , Riñón/efectos de los fármacos , Riñón/virología , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncorhynchus mykiss/virología , Péptido Hidrolasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA