Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499070

RESUMEN

Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.


Asunto(s)
Dextranos , Nanopartículas de Magnetita , Dextranos/química , Nanopartículas de Magnetita/química , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Tamaño de la Partícula
2.
Sci Rep ; 13(1): 14384, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658092

RESUMEN

Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.


Asunto(s)
Células Endoteliales , Ingeniería de Tejidos , Humanos , Antioxidantes , Prótesis Vascular , Ciclo Celular
3.
Macromol Biosci ; 23(9): e2300184, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37262314

RESUMEN

Proper endothelialization and limited collagen deposition on the luminal surface after graft implantation plays a crucial role to prevent the occurrence of stenosis. To achieve these conditions, a biodegradable graft with adequate mechanical properties and the ability to sequentially deliver therapeutic agents isfabricated. In this study, a dual-release system is constructed through coaxial electrospinning by incorporating recombinant human vascular endothelial growth factor (VEGF) and transforming growth factor ß1 (TGF-ß1) inhibitor into silk fibroin (SF) nanofibers to form a bioactive membrane. The functionalized SF membrane as the inner layer of the graft is characterized by the release profile, cell proliferation and protein expression. It presents excellent biocompatibility and biodegradation, facilitating cell attachment, proliferation, and infiltration. The core-shell structure enables rapid VEGF release within 10 days and sustained plasmid delivery for 21 days. A 2.0-mm-diameter vascular graft is fabricated by integrating the SF membrane with decellularized porcine small intestinal submucosa (SIS), aiming to facilitate the integration process under a stable extracellular matrix structure. The bioengineered graft is functionalized with the sequential administration of VEGF and TGF-ß1, and with the reinforced and compatible mechanical properties, thereby offers an orchestrated solution for stenosis with potential for in situ vascular tissue engineering applications.


Asunto(s)
Fibroínas , Animales , Humanos , Constricción Patológica , Fibroínas/farmacología , Fibroínas/química , Seda/química , Porcinos , Ingeniería de Tejidos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
4.
Heliyon ; 9(6): e16487, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37274707

RESUMEN

Iron oxide nanoparticles (IONs) are of great interest in nanomedicine for imaging, drug delivery, or for hyperthermia treatment. Although many research groups have focused on the synthesis and application of IONs in nanomedicine, little is known about the influence of the surface properties on the particles' behavior in the human body. This study analyzes the impact of surface coatings (dextran, polyvinyl alcohol, polylactide-co-glycolide) on the nanoparticles' cytocompatibility, agglomeration, degradation, and the resulting oxidative stress induced by the particle degradation. All particles, including bare IONs (BIONs), are highly cytocompatible (>70%) and show no significant toxicity towards smooth muscle cells. Small-angle X-ray scattering profiles visualize the aggregation behavior of nanoparticles and yield primary particle sizes of around 20 nm for the investigated nanoparticles. A combined experimental setup of dynamic light scattering and phenanthroline assay was used to analyze the long-term agglomeration and degradation profile of IONs in simulated body fluids, allowing fast screening of multiple candidates. All particles degraded in simulated endosomal and lysosomal fluid, confirming the pH-dependent dissolution. The degradation rate decreased with the shrinking size of particles leading to a plateau. The fastest Fe2+ release could be measured for the polyvinyl-coated IONs. The analytical setup is ideal for a quick preclinical study of IONs, giving often neglected yet crucial information about the behavior and toxicity of nanoparticles in the human body. Moreover, this study allows for the development and evaluation of novel ferroptosis-inducing agents.

5.
Colloids Surf B Biointerfaces ; 228: 113428, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37379701

RESUMEN

Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Humanos , Dióxido de Silicio , Tamaño de la Partícula , Nanopartículas Magnéticas de Óxido de Hierro , Iones
6.
Biomater Sci ; 9(13): 4607-4612, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096938

RESUMEN

Melt electrowriting (MEW) is a high-resolution fiber-forming technology for the digital fabrication of complex micro-structured scaffolds for tissue engineering, which has convincingly shown its potential in in vitro and in vivo animal studies. The clinical translation of such constructs to the patient requires the capability to visualize them upon implantation with clinically accepted methods such as magnetic resonance imaging (MRI). To this end, this work presents the modification of polycaprolactone (PCL) scaffolds with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to render them visualizable by MRI. Composite scaffolds containing up to 0.3 weight % USPIOs were 3D printed by MEW and could be sensitively detected in vitro using T2- and T2*-weighted MRI. At the same time, USPIO incorporation did not affect the usability of PCL for tissue engineering applications as demonstrated by the mechanical and cytocompatibility evaluation. Concentrations up to 0.2% caused small to no decrease in the ultimate tensile strength and Young's modulus. Cytocompatibility tests resulted in excellent cell viability, with proliferating cells adhering to all the scaffolds. This work contributes to the materials library for MEW and opens the possibility of using MRI for longitudinal monitoring of MEW grafts.


Asunto(s)
Nanopartículas de Magnetita , Andamios del Tejido , Animales , Dextranos , Humanos , Imagen por Resonancia Magnética , Ingeniería de Tejidos
7.
Front Cardiovasc Med ; 7: 610344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335915

RESUMEN

Background: Endothelial function significantly depends on the proteolytic release of surface expressed signal molecules, their receptors and adhesion molecules via the metalloproteinase ADAM17. The pseudoproteases iRhom1 and 2 independently function as adapter proteins for ADAM17 and are essential for the maturation, trafficking, and activity regulation of ADAM17. Bioinformatic data confirmed that immune cells predominantly express iRhom2 while endothelial cells preferentially express iRhom1. Objective: Here, we investigate possible reasons for higher iRhom1 expression and potential inflammatory regulation of iRhom2 in endothelial cells and analyze the consequences for ADAM17 maturation and function. Methods: Primary endothelial cells were cultured in absence and presence of flow with and without inflammatory cytokines (TNFα and INFγ). Regulation of iRhoms was studied by qPCR, involved signaling pathways were studied with transcriptional inhibitors and consequences were analyzed by assessment of ADAM17 maturation, surface expression and cleavage of the ADAM17 substrate junctional adhesion molecule JAM-A. Results: Endothelial iRhom1 is profoundly upregulated by physiological shear stress. This is accompanied by a homeostatic phenotype driven by the transcription factor KLF2 which is, however, only partially responsible for regulation of iRhom1. By contrast, iRhom2 is most prominently upregulated by inflammatory cytokines. This correlates with an inflammatory phenotype driven by the transcription factors NFκB and AP-1 of which AP-1 is most relevant for iRhom2 regulation. Finally, shear stress exposure and inflammatory stimulation have independent and no synergistic effects on ADAM17 maturation, surface expression and JAM-A shedding. Conclusion: Conditions of shear stress and inflammation differentially upregulate iRhom1 and 2 in primary endothelial cells which then results in independent regulation of ADAM17.

8.
Artículo en Inglés | MEDLINE | ID: mdl-32850700

RESUMEN

The manufacture of fibrous scaffolds with tailored micrometric features and anatomically relevant three-dimensional (3D) geometries for soft tissue engineering applications remains a great challenge. Melt electrowriting (MEW) is an advanced additive manufacturing technique capable of depositing predefined micrometric fibers. However, it has been so far inherently limited to simple planar and tubular scaffold geometries because of the need to avoid polymer jet instabilities. In this work, we surmount the technical boundaries of MEW to enable the manufacture of complex fibrous scaffolds with simultaneous controlled micrometric and patient-specific anatomic features. As an example of complex geometry, aortic root scaffolds featuring the sinuses of Valsalva were realized. By modeling the electric field strength associated with the MEW process for these constructs, we found that the combination of a conductive core mandrel with a non-conductive 3D printed model reproducing the complex geometry minimized the variability of the electric field thus enabling the accurate deposition of fibers. We validated these findings experimentally and leveraged the micrometric resolution of MEW to fabricate unprecedented fibrous aortic root scaffolds with anatomically relevant shapes and biomimetic microstructures and mechanical properties. Furthermore, we demonstrated the fabrication of patient-specific aortic root constructs from the 3D reconstruction of computed tomography clinical data.

9.
Tissue Eng Part B Rev ; 25(2): 135-151, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30311858

RESUMEN

IMPACT STATEMENT: The use of bio-based materials (i.e., biologically derived materials that have either a biological origin, including engineered tissues, or a bio-inspired chemical composition) offers the potential to obtain covered stents (CS) with superior performance with respect to the currently available ones, which employ synthetic materials. This will advance and expand the clinical applicability of CS not only in the cardiovascular field but also for the treatment of other target areas such as segments of the respiratory, gastrointestinal, biliary, and urinary tracts.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Stents , Ingeniería de Tejidos/métodos , Humanos , Membranas
10.
Ann Biomed Eng ; 46(4): 616-626, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29340931

RESUMEN

In vitro tissue engineering of vascular grafts requires dynamic conditioning in a bioreactor system for in vitro tissue maturation and remodeling to receive a mechanically adequate and hemocompatible implant. The goal of the current work was to develop a bioreactor system for the conditioning of vascular grafts which is (i) able to create a wide range of flow, pressure and frequency conditions, including physiological ones; (ii) compact and easy to assemble; (iii) transportable; (iv) disposable. The system is driven by a small centrifugal pump controlled via a custom-made control unit, which can also be operated on batteries to allow for autonomous transportation. To show the potential of the newly developed bioreactor system small-caliber vascular composite grafts (n = 5, internal diameter = 3 mm, length = 12.5 cm) were fabricated using a fibrin scaffold embedding human umbilical artery smooth muscle cells and a polyvinylidene fluoride warp-knitted macroporous mesh. Subsequently, the vascular grafts were endothelialized and mounted in the bioreactor system for conditioning. The conditioning parameters remained within the predefined range over the complete conditioning period and during operation on batteries as tested for up to 25 h. Fabrication and pre-conditioning under arterial pressure and shear stress conditions resulted in robust and hemocompatible tissue-engineered vascular grafts. Analysis of immunohistochemical stainings against extracellular matrix and cell-specific proteins revealed collagen I and collagen III deposition. The luminal surface was confluently covered with endothelial cells. The developed bioreactor system showed cytocompatibility and pH, pO2, pCO2, glucose and lactate stayed constant. Sterility was maintained during the complete fabrication process of the vascular grafts. The potential of a versatile and mobile system and its functionality by conditioning tissue-engineered vascular grafts under physiological pressure and flow conditions could be demonstrated.


Asunto(s)
Reactores Biológicos , Prótesis Vascular , Técnicas de Cultivo de Célula , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arterias Umbilicales/metabolismo , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido , Arterias Umbilicales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA