Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G163-G175, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988603

RESUMEN

The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1ß mRNA (il-1ß) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.


Asunto(s)
Colitis , Propionibacterium freudenreichii , Receptores Fc , Sulfatos , Humanos , Ratones , Animales , Células CACO-2 , Dextranos/farmacología , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/metabolismo , Inflamación/metabolismo , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad
2.
J Surg Res ; 296: 165-173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277953

RESUMEN

INTRODUCTION: Intestinal manipulation (IM)-induced inflammation could contribute to postoperative ileus (POI) pathophysiology via the modulation of prostanoid pathways. To identify the prostanoids involved, we aimed to characterize the profile of prostanoids and their synthesis enzyme expression in a murine model of POI and to determine whether the altered prostanoids could contribute to POI. METHODS: Four or 14 h after IM in mice, gastrointestinal (GI) motility and intestinal epithelial barrier (IEB) permeability were assessed in vivo and ex vivo in Ussing chambers. Using high sensitivity liquid chromatography-tandem mass spectrometry, we characterized the tissue profile of polyunsaturated fatty acid metabolites in our experimental model. Finally, we evaluated in vivo the effects of the prostanoids studied upon IM-induced gut dysfunctions. RESULTS: We first showed that 14 h after IM was significantly faster than jejunal transit at 4 h post-IM, although it remained significantly increased compared to the control. In contrast, we showed that IM-induced inflammation increase in jejunum permeability was similar after four and 14 h. We next showed that expression of prostacyclin synthase and hemopoietic prostaglandin-D synthase mRNA and their products were significantly reduced 14 h after IM as compared to controls. Furthermore, 15-deoxy-delta 12,14-Prostaglandin J2 reduced the IM-induced inflammation increase in IEB permeability but had no effect on GI motility. In contrast, PGI2 increased IM-induced IEB permeability and motility dysfunctions. CONCLUSIONS: Arachidonic acid derivative contributes differentially to GI dysfunction in POI. The decrease of 15-deoxy-delta 12,14-Prostaglandin J2 levels induced by IM could contribute to impaired GI dysfunctions in POI and could be considered as putative therapeutic targets to restore barrier dysfunctions associated with POI.


Asunto(s)
Ileus , Prostaglandinas , Ratones , Animales , Prostaglandinas/farmacología , Ileus/etiología , Motilidad Gastrointestinal , Yeyuno , Complicaciones Posoperatorias , Inflamación/metabolismo
3.
J Neurochem ; 164(2): 193-209, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219522

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.


Asunto(s)
Enfermedad de Crohn , Sistema Nervioso Entérico , Enfermedad de Parkinson , Adulto , Humanos , Animales , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Sistema Nervioso Entérico/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Línea Celular , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G429-G435, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643021

RESUMEN

Gut-brain axis and inflammation are two hot topics in Parkinson's disease (PD). In this setting, the leucine-rich repeat kinase 2 (LRRK2) gene, which encodes the eponym protein, has attracted much attention. LRRK2 is not only the gene most commonly associated with Parkinson's disease but also a susceptibility gene for Crohn's disease (CD), thereby suggesting that it may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. In contrast to the accumulated data on LRRK2 in the central nervous system (CNS), research on LRRK2 in the digestive tract is still in its infancy, and the scope of the present review article is therefore to review existing studies on LRRK2 in the gastrointestinal tract in both physiological and pathological conditions. In light of current data on LRRK2 in the gastrointestinal tract, we discuss if LRRK2 could be or not regarded as a molecular link between gut inflammation, Parkinson's disease, and Crohn's disease, and we suggest directions for future research.

5.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G523-G553, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165557

RESUMEN

Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Disbiosis/terapia , Colitis Ulcerosa/patología , Inflamación
6.
J Neurochem ; 158(2): 94-104, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33569813

RESUMEN

The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Tauopatías/genética , Proteínas tau/genética , Animales , Microbioma Gastrointestinal , Humanos , Tauopatías/metabolismo , Proteínas tau/metabolismo , Proteínas tau/fisiología
7.
FASEB J ; 34(7): 9285-9296, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436623

RESUMEN

A sizeable body of evidence has recently emerged to suggest that gastrointestinal (GI) inflammation might be involved in the development of Parkinson's disease (PD). There is now strong epidemiological and genetical evidence linking PD to inflammatory bowel diseases and we recently demonstrated that the neuronal protein alpha-synuclein, which is critically involved in PD pathophysiology, is upregulated in inflamed segments of Crohn's colon. The microtubule associated protein tau is another neuronal protein critically involved in neurodegenerative disorders but, in contrast to alpha-synuclein, no data are available about its expression and phosphorylation patterns in inflammatory bowel diseases. Here, we examined the expression levels of tau isoforms, their phosphorylation profile and truncation in colon biopsy specimens from 16 Crohn's disease (CD) and 6 ulcerative colitis (UC) patients and compared them to samples from 16 controls. Additional experiments were performed in full thickness segments of colon of five CD and five control subjects, in primary cultures of rat enteric neurons and in nuclear factor erythroid 2-related factor (Nrf2) knockout mice. Our results show the upregulation of two main human tau isoforms in the enteric nervous system (ENS) in CD but not in UC. This upregulation was not transcriptionally regulated but instead likely resulted from a decrease in protein clearance via an Nrf2 pathway. Our findings, which provide the first detailed characterization of tau in CD, suggest that the key proteins involved in neurodegenerative disorders such as alpha-synuclein and tau, might also play a role in CD.


Asunto(s)
Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Tracto Gastrointestinal/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas tau/metabolismo , Animales , Estudios de Casos y Controles , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Femenino , Tracto Gastrointestinal/patología , Humanos , Masculino , Ratones
8.
J Neurochem ; 148(6): 746-760, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30589944

RESUMEN

The protein alpha-synuclein whose expression is strongly implicated in Parkinson's disease (PD) is not only expressed in the CNS but also in the enteric nervous system (ENS). The growing body of evidence suggesting that gastrointestinal inflammation is involved in the development of PD led us to investigate the effects of inflammation on alpha-synuclein expression in primary culture of rat ENS and in mice with dextran sulfate sodium-induced colitis. Using western blot and qPCR, we found that both lipopolysaccharide and a combination of tumor necrosis factor-α and interleukin 1-ß decreased the expression levels of alpha-synuclein in primary culture of rat ENS, an effect that was prevented in the presence of the p38 inhibitors SB203580 and BIRB 796. Lipopolysaccharide and tumor necrosis factor-α/interleukin 1-ß had no effect on alpha-synuclein expression in primary culture of rat CNS and in human erythroid leukemia cells. In mice, acute but not chronic dextran sulfate sodium-induced colitis was associated with a decreased expression of colonic alpha-synuclein. As a whole, our findings indicate that acute inflammatory insults down-regulate alpha-synuclein expression in the ENS via a p38 pathway. They provide new insights into the widely discussed concepts of alpha-synuclein expression and aggregation in the ENS in PD and raise issues about the possible role of gastrointestinal inflammation in the development of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Regulación hacia Abajo , Sistema Nervioso Entérico/patología , Humanos , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G1-G11, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29517926

RESUMEN

Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells. A better understanding of EGC response to an inflammatory environment, often referred to as enteric glial reactivity, could help define the physiological role of EGC and the importance of this reactivity in maintaining gut functions. In chronic inflammatory disorders of the gut such as Crohn's disease (CD) and ulcerative colitis, EGC exhibit abnormal phenotypes, and their neighboring cells are dysfunctional; however, it remains unclear whether EGC are only passive bystanders or active players in the pathophysiology of both disorders. The aim of the present study is to review the physiological roles and properties of EGC, their response to inflammation, and their role in the regulation of the intestinal epithelial barrier and to discuss the emerging concept of CD as an enteric gliopathy.


Asunto(s)
Enfermedad de Crohn , Sistema Nervioso Entérico/inmunología , Intestinos , Neuroglía/inmunología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/fisiopatología , Sistema Nervioso Entérico/fisiopatología , Humanos , Inflamación , Intestinos/inmunología , Intestinos/inervación
10.
World J Surg ; 42(4): 953-964, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28983734

RESUMEN

BACKGROUND: Postoperative ileus (POI) is observed in 20-30% of patients undergoing colorectal cancer surgery, despite enhanced recovery programs (ERPs). Cyclooxygenase (COX)-2 is identified as a key enzyme in POI, but other arachidonic acid pathway enzymes have received little attention despite their potential as selective targets to prevent POI. The objectives were to compare the expression of arachidonic acid metabolism (AAM) enzymes (1) between patients who underwent colorectal cancer surgery and followed an ERP or not (NERP), (2) and between ERP patients who experimented POI or not and (3) to determine the ability of antagonists of these pathways to modulate contractile activity of colonic muscle. METHODS: This was a translational study. Main outcome measures were gastrointestinal motility recovery data, mRNA expressions of key enzymes involved in AAM (RT-qPCR) and ex vivo motility values of the circular colon muscle. Twenty-eight prospectively included ERP patients were compared to eleven retrospectively included NERP patients that underwent colorectal cancer surgery. RESULTS: ERP reduced colonic mucosal COX-2, microsomal prostaglandin E synthase (mPGES1) and hematopoietic prostaglandin D synthase (HPGDS) mRNA expression. mPGES1 and HPGDS mRNA expression were significantly associated with ERP compliance (respectively, r2 = 0.25, p = 0.002 and r2 = 0.6, p < 0.001). In muscularis propria, HPGDS mRNA expression was correlated with GI motility recovery (p = 0.002). The pharmacological inhibition of mPGES1 increased spontaneous ex vivo contractile activity in circular muscle (p = 0.03). CONCLUSION: The effects of ERP on GI recovery are correlated with the compliance of ERP and could be mediated at least in part by mPGES1, HPGDS and COX-2. Furthermore, mPGES1 shows promise as a therapeutic target to further reduce POI duration among ERP patients.


Asunto(s)
Neoplasias Colorrectales/cirugía , Motilidad Gastrointestinal/genética , Ileus/fisiopatología , Complicaciones Posoperatorias/fisiopatología , ARN Mensajero/metabolismo , Ácido Araquidónico/metabolismo , Ciclooxigenasa 2/genética , Inhibidores Enzimáticos/farmacología , Femenino , Expresión Génica , Humanos , Ileus/enzimología , Ileus/etiología , Mucosa Intestinal/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/genética , Masculino , Microsomas/enzimología , Contracción Muscular/efectos de los fármacos , Músculo Liso/fisiopatología , Atención Perioperativa , Complicaciones Posoperatorias/enzimología , Complicaciones Posoperatorias/etiología , Prostaglandina-E Sintasas/antagonistas & inhibidores , Prostaglandina-E Sintasas/genética , Recuperación de la Función , Estudios Retrospectivos
11.
Gastroenterology ; 150(1): 168-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433161

RESUMEN

BACKGROUND & AIMS: Enteric glial cells (EGCs) produce soluble mediators that regulate homeostasis and permeability of the intestinal epithelial barrier (IEB). We investigated the profile of polyunsaturated fatty acid (PUFA) metabolites produced by EGCs from rats and from patients with Crohn's disease (CD), compared with controls, along with the ability of one of these metabolites, 15-hydroxyeicosatetraenoic acid (15-HETE), to regulate the permeability of the IEB. METHODS: We isolated EGCs from male Sprague-Dawley rats, intestinal resections of 6 patients with CD, and uninflamed healthy areas of intestinal tissue from 6 patients who underwent surgery for colorectal cancer (controls). EGC-conditioned media was analyzed by high-sensitivity liquid-chromatography tandem mass spectrometry to determine PUFA signatures. We used immunostaining to identify 15-HETE-producing enzymes in EGCs and tissues. The effects of human EGCs and 15-HETE on permeability and transepithelial electrical resistance of the IEB were measured using Caco-2 cells; effects on signal transduction proteins were measured with immunoblots. Levels of proteins were reduced in Caco-2 cells using short-hairpin RNAs or proteins were inhibited pharmacologically. Rats were given intraperitoneal injections of 15-HETE or an inhibitor of 15-lipoxygenase (the enzyme that produces 15-HETE); colons were collected and permeability was measured. RESULTS: EGCs expressed 15-lipoxygenase-2 and produced high levels of 15-HETE, which increased IEB resistance and reduced IEB permeability. 15-HETE production was reduced in EGCs from patients with CD compared with controls. EGCs from patients with CD were unable to reduce the permeability of the IEB; the addition of 15-HETE restored permeability to levels of control tissues. Inhibiting 15-HETE production in rats increased the permeability of the IEB in colon tissues. We found that 15-HETE regulates IEB permeability by inhibiting an adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1. CONCLUSIONS: Enteric glial cells from patients with CD have reduced production of 15-HETE, which controls IEB permeability by inhibiting adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Enfermedad de Crohn/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Neuroglía/metabolismo , Análisis de Varianza , Animales , Western Blotting , Células CACO-2/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Valores de Referencia
15.
Gastroenterology ; 147(6): 1230-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25305504

RESUMEN

Since their discovery at the end of the 19th century, enteric glial cells (EGCs), the major cellular component of the enteric nervous system, have long been considered mere supportive cells for neurons. However, recent evidence has challenged this view and highlighted their central role in the regulation of gut homeostasis as well as their implication in digestive and extradigestive diseases. In this review, we summarize emerging concepts as to how EGCs regulate neuromediator expression, exert neuroprotective roles, and even act as neuronal as well as glial progenitors in the enteric nervous system. A particularly crucial property of EGCs is their ability to maintain the integrity of the intestinal epithelial barrier, a role that may have important clinical implications not only for digestive diseases, such as postoperative ileus and inflammatory bowel diseases, but also for extradigestive diseases, such as Parkinson disease or obesity. EGCs could also contribute directly to disease processes (eg, inflammation) by their ability to secrete chemokines/cytokines in response to bacterial or inflammatory challenges. Defining the pleiotropic roles exerted by EGCs may reveal better knowledge and help develop new targeted therapeutic options for a variety of gastrointestinal diseases.


Asunto(s)
Sistema Nervioso Entérico/citología , Enfermedades Intestinales/patología , Mucosa Intestinal/citología , Neuroglía/citología , Homeostasis , Humanos , Mucosa Intestinal/inervación
16.
Gastroenterology ; 146(1): 166-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24055279

RESUMEN

BACKGROUND & AIMS: A dysregulated response of CD4(+) T cells against the microbiota contributes to the development of inflammatory bowel disease. Effector CD4(+) T cells, generated in response to microbe-derived antigens, can reduce somatic inflammatory pain through the local release of opioids. We investigated whether colitogenic CD4(+) T cells that accumulate in the inflamed colon also produce opioids and are able to counteract inflammation-induced visceral pain in mice. METHODS: Colitis was induced via transfer of naive CD4(+)CD45RB(high) T cells to immune-deficient mice or by administration of dextran sulfate sodium. Mice without colitis were used as controls. Samples of colon tissue were collected, and production of opioids by immune cells from inflamed intestine was assessed by quantitative polymerase chain reaction and cytofluorometry analyses. The role of intestinal opioid tone in inflammation-induced visceral hypersensitivity was assessed by colorectal distention. RESULTS: In mice with T cell- or dextran sulfate sodium-induced colitis, colitogenic CD4(+) T cells (T-helper 1 and Th17 cells) accumulated in the inflamed intestine and expressed a high level of endogenous opioids. In contrast, macrophages and epithelial cells did not express opioids; opioid synthesis in the myenteric plexus was not altered on induction of inflammation. In mice with colitis, the local release of opioids by colitogenic CD4(+) T cells led to significant reduction of inflammation-associated visceral hypersensitivity. CONCLUSIONS: In mice, colitogenic Th1 and Th17 cells promote intestinal inflammation and colonic tissue damage but have simultaneous opioid-mediated analgesic activity, thereby reducing abdominal pain.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Plexo Mientérico/inmunología , Péptidos Opioides/inmunología , Células TH1/inmunología , Células Th17/inmunología , Dolor Visceral/inmunología , Animales , Colitis/inducido químicamente , Colitis/patología , Colon/inervación , Colon/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Inmunidad Mucosa , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Plexo Mientérico/fisiología , Péptidos Opioides/fisiología
17.
BMC Gastroenterol ; 15: 112, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26338799

RESUMEN

BACKGROUND: Recent works provide evidence of the importance of the prostaglandin D2 (PGD2) metabolic pathway in inflammatory bowel diseases. We investigated the expression of PGD2 metabolic pathway actors in Crohn's disease (CD) and the ability of the enteric nervous system (ENS) to produce PGD2 in inflammatory conditions. METHODS: Expression of key actors involved in the PGD2 metabolic pathway and its receptors was analyzed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in colonic mucosal biopsies of patients from three groups: controls, quiescent and active CD patients. To determine the ability of the ENS to secrete PGD2 in proinflammatory conditions, Lipocalin-type prostaglandin D synthase (L-PGDS) expression by neurons and glial cells was analyzed by immunostaining. PGD2 levels were determined in a medium of primary culture of ENS and neuro-glial coculture model treated by lipopolysaccharide (LPS). RESULTS: In patients with active CD, inflamed colonic mucosa showed significantly higher COX2 and L-PGDS mRNA expression, and significantly higher PGD2 levels than healthy colonic mucosa. On the contrary, peroxysome proliferator-activated receptor Gamma (PPARG) expression was reduced in inflamed colonic mucosa of CD patients with active disease. Immunostaining showed that L-PGDS was expressed in the neurons of human myenteric and submucosal plexi. A rat ENS primary culture model confirmed this expression. PGD2 levels were significantly increased on primary culture of ENS treated with LPS. This production was abolished by AT-56, a specific competitive L-PGDS inhibitor. The neuro-glial coculture model revealed that each component of the ENS, ECG and neurons, could contribute to PGD2 production. CONCLUSIONS: Our results highlight the activation of the PGD2 metabolic pathway in Crohn's disease. This study supports the hypothesis that in Crohn's disease, enteric neurons and glial cells form a functional unit reacting to inflammation by producing PGD2.


Asunto(s)
Enfermedad de Crohn/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Plexo Mientérico/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Prostaglandina D2/metabolismo , Plexo Submucoso/metabolismo , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Técnicas de Cocultivo , Enfermedad de Crohn/patología , Ciclooxigenasa 2/genética , Citocinas/genética , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Femenino , Humanos , Mucosa Intestinal/metabolismo , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Masculino , Persona de Mediana Edad , PPAR gamma/metabolismo , Prostaglandina D2/genética , ARN Mensajero/metabolismo , Ratas , Índice de Severidad de la Enfermedad , Adulto Joven
18.
J Neurochem ; 130(6): 805-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24749759

RESUMEN

Enteric glial cells (EGCs) are in many respects similar to astrocytes of the central nervous system and express similar proteins including glial fibrillary acidic protein (GFAP). Changes in GFAP expression and/or phosphorylation have been reported during brain damage or central nervous system degeneration. As in Parkinson's disease (PD) the enteric neurons accumulate α-synuclein, and thus are showing PD-specific pathological features, we undertook the present survey to study whether the enteric glia in PD become reactive by assessing the expression and phosphorylation levels of GFAP in colonic biopsies. Twenty-four PD, six progressive supranuclear palsy (PSP), six multiple system atrophy (MSA) patients, and 21 age-matched healthy controls were included. The expression levels and the phosphorylation state of GFAP were analyzed in colonic biopsies by western blot. Additional experiments were performed using real-time PCR for a more precise analysis of the GFAP isoforms expressed by EGCs. We showed that GFAPκ was the main isoform expressed in EGCs. As compared to control subjects, patients with PD, but not PSP and MSA, had significant higher GFAP expression levels in their colonic biopsies. The phosphorylation level of GFAP at serine 13 was significantly lower in PD patients compared to control subjects. By contrast, no change in GFAP phosphorylation was observed between PSP, MSA and controls. Our findings provide evidence that enteric glial reaction occurs in PD and further reinforce the role of the enteric nervous system in the initiation and/or the progression of the disease. We showed that GFAP is over-expressed and hypophosphorylated in the enteric glial cells (EGCs) of Parkinson's disease (PD) patients as compared to healthy subjects and patients with atypical parkinsonism (MSA, multiple system atrophy and PSP, progressive supranuclear palsy). Our findings provide evidence that enteric glial reaction occurs in PD but not in PSP and MSA and further reinforce the role of the enteric nervous system in the pathophysiology of PD.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/biosíntesis , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Western Blotting , Química Encefálica/efectos de los fármacos , Línea Celular , Colon/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Neuroglía/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Serina/metabolismo
19.
J Neuroinflammation ; 11: 202, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25497784

RESUMEN

BACKGROUND: Evidence continues to mount concerning the importance of the enteric nervous system (ENS) in controlling numerous intestinal functions in addition to motility and epithelial functions. Nevertheless, little is known concerning the direct participation of the ENS in the inflammatory response of the gut during infectious or inflammatory insults. In the present study we analyzed the ENS response to bacterial lipopolysaccharide, in particular the production of a major proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α). METHODS: TNF-α expression (measured by qPCR, quantitative Polymerase Chain Reaction) and production (measured by ELISA) were measured in human longitudinal muscle-myenteric plexus (LMMP) and rat ENS primary cultures (rENSpc). They were either treated or not treated with lipopolysaccharide (LPS) in the presence or not of electrical field stimulation (EFS). Activation of extracellular signal-regulated kinase (ERK) and 5'-adenosine monophosphate-activated protein kinase (AMPK) pathways was analyzed by immunocytochemistry and Western blot analysis. Their implications were studied using specific inhibitors (U0126, mitogen-activated protein kinase kinase, MEK, inhibitor and C compound, AMPK inhibitor). We also analyzed toll-like receptor 2 (TLR2) expression and interleukin-6 (IL-6) production after LPS treatment simultaneously with EFS or TNF-α-neutralizing antibody. RESULTS: Treatment of human LMMP or rENSpc with LPS induced an increase in TNF-α production. Activation of the ENS by EFS significantly inhibited TNF-α production. This regulation occurred at the transcriptional level. Signaling analyses showed that LPS induced activation of ERK but not AMPK, which was constitutively activated in rENSpc neurons. Both U0126 and C compound almost completely prevented LPS-induced TNF-α production. In the presence of LPS, EFS inhibited the ERK and AMPK pathways. In addition, we demonstrated using TNF-α-neutralizing antibody that LPS-induced TNF-α production increased TLR2 expression and reduced IL-6 production. CONCLUSIONS: Our results show that LPS induced TNF-α production by enteric neurons through activation of the canonical ERK pathway and also in an AMPK-dependent manner. ENS activation through the inhibition of these pathways decreased TNF-α production, thereby modulating the inflammatory response induced by endotoxin.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Neuronas/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Entérico/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA