Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830219

RESUMEN

Uncontrolled growth of solid tumors will result in a hallmark hypoxic condition, whereby the key transcriptional regulator of hypoxia inducible factor-1α (HIF-1α) will be stabilized to activate the transcription of target genes that are responsible for the metabolism, proliferation, and metastasis of tumor cells. Targeting and inhibiting the transcriptional activity of HIF-1 may provide an interesting strategy for cancer therapy. In the present study, an immune library and a synthetic library were constructed for the phage display selection of Nbs against recombinant PAS B domain protein (rPasB) of HIF-1α. After panning and screening, seven different nanobodies (Nbs) were selected, of which five were confirmed via immunoprecipitation to target the native HIF-1α subunit. The inhibitory effect of the selected Nbs on HIF-1 induced activation of target genes has been evaluated after intracellular expression of these Nbs in HeLa cells. The dramatic inhibition of both intrabody formats on the expression of HIF-1-related target genes has been confirmed, which indicated the inhibitory efficacy of selected Nbs on the transcriptional activity of HIF-1.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Anticuerpos de Dominio Único/farmacología , Transcripción Genética/efectos de los fármacos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Hipoxia de la Célula/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Transfección , Neoplasias del Cuello Uterino/patología
2.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906437

RESUMEN

Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12-15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications.


Asunto(s)
Leucemia Mieloide Aguda/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Femenino , Humanos , Cinética , Ratones , Ratones SCID , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Anticuerpos de Dominio Único/genética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Temperatura de Transición
3.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569768

RESUMEN

Current cancer therapeutics suffer from a lack of specificity in targeting tumor cells and cause severe side effects. Therefore, the design of highly specialized drugs comprising antibody derivatives inducing apoptosis in targeted cancer cells is considered to be a promising strategy. Drugs acting on death receptor 5 (DR5) such as DR5 agonist antibodies replacing "TNF-related apoptosis-inducing ligand" (TRAIL) offer feasible opportunities in this direction. Although such agonists provided good antitumor activity in preclinical studies, they were less effective in clinical studies, possibly due to a disturbed Fc interaction with Fc-γ receptors. Thus, multimerized antigen binding fragments without Fc have been proposed to increase their efficacy. We generated nanobodies (Nbs), recombinant variable domains of heavy chain-only antibodies of camelids, against the DR5 ectodomain. Nb24 and Nb28 had an affinity in the nM and sub-nM range, but only Nb28 competes with TRAIL for binding to DR5. Bivalent, trivalent, and tetravalent constructs were generated, as well as an innovative pentameric Nb complex, to provoke avidity effects. In our cellular assays, these trimeric, tetrameric, and pentameric Nbs have a higher apoptotic capacity than monomeric Nbs and seem to mimic the activity of the natural TRAIL ligand on various cancer cells.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Anticuerpos de Dominio Único/farmacología , Animales , Antineoplásicos Inmunológicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Ratones , Unión Proteica , Receptores de IgG/química , Receptores de IgG/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Proteínas Recombinantes , Anticuerpos de Dominio Único/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Protein Expr Purif ; 137: 64-76, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28668496

RESUMEN

The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli , Isomerasa de Peptidilprolil/química , Anticuerpos de Dominio Único , Animales , Camelus , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/aislamiento & purificación
5.
J Nanobiotechnology ; 13: 33, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25944262

RESUMEN

BACKGROUND: Nanobodies (Nbs) are single-domain antigen-binding fragments derived from the camelids heavy-chain only antibodies (HCAbs). Their unique advantageous properties make Nbs highly attractive in various applications. The general approach to obtain Nbs is to isolate them from immune libraries by phage display technology. However, it is unfeasible when the antigens are toxic, lethal, transmissible or of low immunogenicity. Naïve libraries could be an alternative way to solve the above problems. RESULTS: We constructed a large camel naïve phage display Nanobody (Nb) library with great diversity. The generated library contains to 6.86 × 10(11) clones and to our best of knowledge, this is the biggest naïve phage display Nb library. Then Nbs against human procalcitonin (PCT) were isolated from this library. These Nbs showed comparable affinity and antigen-binding thermostability at 37°C and 60°C compared to the PCT Nbs from an immune phage-displayed library. Furthermore, two PCT Nbs that recognize unique epitopes on PCT have been successfully applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) to detect PCT, which showed a linear working range from 10-1000 ng/mL of PCT. CONCLUSION: We have constructed a large and diverse naïve phage display Nb library, which potentially functioning as a good resource for selecting antigen-binders with high quality. Moreover, functional Nbs against PCT were successfully characterized and applied, providing great values on medical application.


Asunto(s)
Calcitonina/inmunología , Biblioteca de Péptidos , Precursores de Proteínas/inmunología , Anticuerpos de Dominio Único/farmacología , Secuencia de Aminoácidos , Animales , Biotinilación , Péptido Relacionado con Gen de Calcitonina , Camelus/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos/metabolismo , Escherichia coli/genética , Humanos , Linfocitos/inmunología , Datos de Secuencia Molecular , Anticuerpos de Dominio Único/aislamiento & purificación , Anticuerpos de Dominio Único/metabolismo
6.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413606

RESUMEN

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanosomiasis Africana , Animales , Humanos , Trypanosoma brucei brucei/genética , Interleucina-10/genética , Factores de Virulencia , Parasitemia/parasitología , Tripanosomiasis Africana/parasitología
7.
Enzyme Microb Technol ; 155: 109992, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35114480

RESUMEN

In our previous study, the recombinant type II acetylcholinesterase from Bombyx mori (rBmAChE) presented outstanding sensitivity to pesticides, which exhibited great potential in pesticides detection. However, the poor stability of rBmAChE and also the unclear mechanism of its sensitivity hindered the applications in on-site testing of pesticides residues. In this study, we constructed an immune nanobody library, in which we obtained 48 rBmAChE-specific nanobodies. Among them, Nb4 and Nb9 were verified as the most prominent enhancers of the enzyme activity and stabilizers under thermal stress, which indicated their usage as protective reagents for rBmAChE. The simultaneously addition of the two Nbs enhanced the thermal-stability of rBmAChE against exposure to 50-70 °C, and also remained 100% residual activity after 30 days storage at - 20 °C or 4 °C, whereas 80% and 62% at - 80 °C and 25 °C. The homologous modeling and docking of Nb4 and Nb9 to rBmAChE indicated the stabilization of Nb4 to the peripheral anion site (PAS) of rBmAChE while Nb9 protected the C-terminal structure. Substrate docking demonstrated the importance of electrostatic attraction during catalytic process, that might be enhanced by Nbs. As a result, Nb4 and Nb9 were proved to have great potential on rBmAChE applications due to their regulation on enzyme activity and protection against thermal-inactivation and long-term storage of rBmAChE.


Asunto(s)
Bombyx , Plaguicidas , Anticuerpos de Dominio Único , Acetilcolinesterasa/genética , Animales , Biblioteca de Genes , Anticuerpos de Dominio Único/genética
8.
MAbs ; 13(1): 2003281, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818120

RESUMEN

The V-domain Ig Suppressor of T-cell Activation (VISTA) is an immune checkpoint regulator that suppresses immune responses and is readily expressed on human and murine myeloid cells and T cells. This immunosuppressive pathway can be activated using VISTA agonists. Here, we report the development of murine anti-human VISTA (anti-hVISTA) monoclonal antibodies (mAbs), anti-hVISTA nanobodies (Nbs), and cross-reactive rat anti-murine/human VISTA (anti-hmVISTA) mAbs. All mAbs and Nbs generated bound to VISTA (human and/or murine) with dissociation constants in the sub-nanomolar or low nanomolar range. Competition analysis revealed that the selected Nbs bound the same or a nearby epitope(s) as the human VISTA-specific mAbs. However, the cross-reactive mAbs only partially competed with Nbs for binding to hVISTA. All mAbs and one Nb (hVISTANb7) were able to strongly detect VISTA expression on primary human monocytes. Importantly, the murine anti-hVISTA mAbs 7E12 and 7G5 displayed strong agonistic activity in human peripheral blood mononuclear cell cultures, while Nb7 and rat anti-hmVISTA mAbs 3C3, 7C6, 7C7, and 7G1 also behaved as hVISTA agonists, albeit to a lesser extent. Cross-reactive mAbs 7C7 and 7G1 further displayed agonistic potential in murine splenocyte assays. Importantly, mAb 7G1 significantly reduced inflammation associated with the murine model of imiquimod-induced psoriasis. These agonistic VISTA mAbs may represent therapeutic leads to treat inflammatory disorders.


Asunto(s)
Anticuerpos de Dominio Único , Animales , Anticuerpos Monoclonales , Humanos , Leucocitos Mononucleares , Activación de Linfocitos , Ratones , Ratas , Linfocitos T
9.
Sci Rep ; 11(1): 20013, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625580

RESUMEN

Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.


Asunto(s)
Pruebas Inmunológicas/métodos , Reoviridae , Proteínas Virales , Zea mays/virología , Animales , Camélidos del Nuevo Mundo/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Escherichia coli/genética , Enfermedades de las Plantas/virología , Plantas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Reoviridae/inmunología , Reoviridae/aislamiento & purificación , Reoviridae/metabolismo , Proteínas Virales/análisis , Proteínas Virales/biosíntesis , Proteínas Virales/genética
10.
Oncoimmunology ; 10(1): 2000699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777918

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Asunto(s)
Mieloma Múltiple , Anticuerpos de Dominio Único , Actinio , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Ratones , Mieloma Múltiple/terapia , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Immunol ; 12: 777524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917090

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor. Glioblastomas contain a large non-cancerous stromal compartment including various populations of tumor-associated macrophages and other myeloid cells, of which the presence was documented to correlate with malignancy and reduced survival. Via single-cell RNA sequencing of human GBM samples, only very low expression of PD-1, PD-L1 or PD-L2 could be detected, whereas the tumor micro-environment featured a marked expression of signal regulatory protein alpha (SIRPα), an inhibitory receptor present on myeloid cells, as well as its widely distributed counter-receptor CD47. CITE-Seq revealed that both SIRPα RNA and protein are prominently expressed on various populations of myeloid cells in GBM tumors, including both microglia- and monocyte-derived tumor-associated macrophages (TAMs). Similar findings were obtained in the mouse orthotopic GL261 GBM model, indicating that SIRPα is a potential target on GBM TAMs in mouse and human. A set of nanobodies, single-domain antibody fragments derived from camelid heavy chain-only antibodies, was generated against recombinant SIRPα and characterized in terms of affinity for the recombinant antigen and binding specificity on cells. Three selected nanobodies binding to mouse SIRPα were radiolabeled with 99mTc, injected in GL261 tumor-bearing mice and their biodistribution was evaluated using SPECT/CT imaging and radioactivity detection in dissected organs. Among these, Nb15 showed clear accumulation in peripheral organs such as spleen and liver, as well as a clear tumor uptake in comparison to a control non-targeting nanobody. A bivalent construct of Nb15 exhibited an increased accumulation in highly vascularized organs that express the target, such as spleen and liver, as compared to the monovalent format. However, penetration into the GL261 brain tumor fell back to levels detected with a non-targeting control nanobody. These results highlight the tumor penetration advantages of the small monovalent nanobody format and provide a qualitative proof-of-concept for using SIRPα-targeting nanobodies to noninvasively image myeloid cells in intracranial GBM tumors with high signal-to-noise ratios, even without blood-brain barrier permeabilization.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Imagen Molecular/métodos , Células Mieloides/metabolismo , Receptores Inmunológicos/metabolismo , Anticuerpos de Dominio Único , Animales , Anticuerpos Antineoplásicos , Antígenos de Diferenciación/genética , Biomarcadores de Tumor , Neoplasias Encefálicas/etiología , Antígeno CD47/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Expresión Génica , Glioblastoma/etiología , Especificidad del Huésped , Humanos , Inmunohistoquímica , Ratones , Células Mieloides/patología , Receptores Inmunológicos/genética
12.
Front Immunol ; 11: 655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457735

RESUMEN

Snake envenoming is a globally neglected public health problem. Antivenoms produced using animal hyperimmune plasma remain the standard therapy for snakebites. Although effective against systemic effects, conventional antivenoms have limited efficacy against local tissue damage. In addition, potential hypersensitivity reactions, high costs for animal maintenance, and difficulties in obtaining batch-to-batch homogeneity are some of the factors that have motivated the search for innovative and improved therapeutic products against such envenoming. In this study, we have developed a set of nanobodies (recombinant single-domain antigen-binding fragments from camelid heavy chain-only antibodies) against Bothrops atrox snake venom hemorrhagic and myotoxic components. An immune library was constructed after immunizing a Lama glama with whole venom of B. atrox, from which nanobodies were selected by phage display using partially purified hemorrhagic and myotoxic proteins. Biopanning selections retrieved 18 and eight different nanobodies against the hemorrhagic and the myotoxic proteins, respectively. In vivo assays in mice showed that five nanobodies inhibited the hemorrhagic activity of the proteins; three neutralized the hemorrhagic activity of whole B. atrox venom, while four nanobodies inhibited the myotoxic protein. A mixture of the anti-hemorrhagic and anti-myotoxic nanobodies neutralized the local tissue hemorrhage and myonecrosis induced by the whole venom, although the nanobody mixture failed to prevent the venom lethality. Nevertheless, our results demonstrate the efficacy and usefulness of these nanobodies to neutralize important pathologies of the venom, highlighting their potential as innovative therapeutic agents against envenoming by B. atrox, a viperid species causing many casualties in South America.


Asunto(s)
Antivenenos/uso terapéutico , Bothrops/metabolismo , Venenos de Crotálidos/química , Venenos de Crotálidos/inmunología , Hemorragia/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Miotoxicidad/tratamiento farmacológico , Anticuerpos de Dominio Único/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Camélidos del Nuevo Mundo/inmunología , Inmunización/métodos , Masculino , Ratones , Resultado del Tratamiento
13.
Methods Mol Biol ; 1701: 169-187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29116505

RESUMEN

Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 107-108 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 108 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.


Asunto(s)
Camelus/genética , Clonación Molecular/métodos , Biblioteca de Genes , Vectores Genéticos , Biblioteca de Péptidos , Anticuerpos de Cadena Única/genética , Animales , Camelus/inmunología , Anticuerpos de Cadena Única/inmunología
14.
Toxins (Basel) ; 10(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494518

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS: An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb1132 exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS: The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb1132 with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.


Asunto(s)
Anticuerpos Neutralizantes , Proteínas Recombinantes , Toxina Shiga II , Anticuerpos de Dominio Único , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/fisiología , Camélidos del Nuevo Mundo/inmunología , Chlorocebus aethiops , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Toxina Shiga II/química , Toxina Shiga II/genética , Toxina Shiga II/inmunología , Toxina Shiga II/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/fisiología , Células Vero
15.
Front Vet Sci ; 5: 250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30370272

RESUMEN

Effective management of foot and mouth disease (FMD) requires diagnostic tests to distinguish between infected and vaccinated animals (DIVA). To address this need, several enzyme-linked immunosorbent assay (ELISA) platforms have been developed, however, these tests vary in their sensitivity and specificity and are very expensive for developing countries. Camelid-derived single-domain antibodies fragments so-called Nanobodies, have demonstrated great efficacy for the development of serological diagnostics. This study describes the development of a novel Nanobody-based FMD 3ABC competitive ELISA, for the serological detection of antibodies against FMD Non-Structural Proteins (NSP) in Uganda cattle herds. This in-house ELISA was validated using more than 600 sera from different Uganda districts, and virus serotype specificities. The evaluation of the performance of the assay demonstrated high diagnostic sensitivity and specificity of 94 % (95 % CI: 88.9-97.2), and 97.67 % (95 % CI: 94.15-99.36) respectively, as well as the capability to detect NSP-specific antibodies against multiple FMD serotype infections. In comparison with the commercial PrioCHECK FMDV NSP-FMD test, there was a strong concordance and high correlation and agreement in the performance of the two tests. This new developed Nanobody based FMD 3ABC competitive ELISA could clearly benefit routine disease diagnosis, the establishment of disease-free zones, and the improvement of FMD management and control in endemically complex environments, such as those found in Africa.

16.
Curr Pharm Des ; 22(43): 6500-6518, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27669966

RESUMEN

BACKGROUND: The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. METHODS: Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. RESULTS: Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. CONCLUSION: Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade.


Asunto(s)
Bacteriófagos/genética , Biblioteca de Péptidos , Anticuerpos de Dominio Único/inmunología , Animales , Camelus , Humanos , Anticuerpos de Dominio Único/genética
17.
Cell Host Microbe ; 19(1): 55-66, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26764597

RESUMEN

The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/química , Sistema del Grupo Sanguíneo ABO/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Polisacáridos/metabolismo , Sistema del Grupo Sanguíneo ABO/genética , Adhesinas Bacterianas/genética , Animales , Sitios de Unión , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Ratones , Modelos Moleculares , Unión Proteica
18.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1631-5, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25484214

RESUMEN

Helicobacter pylori is a human pathogen that colonizes about 50% of the world's population, causing chronic gastritis, duodenal ulcers and even gastric cancer. A steady emergence of multiple antibiotic resistant strains poses an important public health threat and there is an urgent requirement for alternative therapeutics. The blood group antigen-binding adhesin BabA mediates the intimate attachment to the host mucosa and forms a major candidate for novel vaccine and drug development. Here, the recombinant expression and crystallization of a soluble BabA truncation (BabA(25-460)) corresponding to the predicted extracellular adhesin domain of the protein are reported. X-ray diffraction data for nanobody-stabilized BabA(25-460) were collected to 2.25 Šresolution from a crystal that belonged to space group P21, with unit-cell parameters a = 50.96, b = 131.41, c = 123.40 Å, α = 90.0, ß = 94.8, γ = 90.0°, and which was predicted to contain two BabA(25-460)-nanobody complexes per asymmetric unit.


Asunto(s)
Adhesinas Bacterianas/química , Antígenos de Grupos Sanguíneos/inmunología , Helicobacter pylori/inmunología , Adhesinas Bacterianas/aislamiento & purificación , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA