Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 14(12): 4417-4430, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099601

RESUMEN

Antibacterial drug-loaded electrospun nano- and microfibrous dressings are of major interest as novel topical drug delivery systems in wound care. In this study, chloramphenicol (CAM)-loaded polycaprolactone (PCL) and PCL/poly(ethylene oxide) (PEO) fiber mats were electrospun and characterized in terms of morphology, drug distribution, physicochemical properties, drug release, swelling, cytotoxicity, and antibacterial activity. Computational modeling together with physicochemical analysis helped to elucidate possible interactions between the drug and carrier polymers. Strong interactions between PCL and CAM together with hydrophobicity of the system resulted in much slower drug release compared to the hydrophilic ternary system of PCL/PEO/CAM. Cytotoxicity studies confirmed safety of the fiber mats to murine NIH 3T3 cells. Disc diffusion assay demonstrated that both fast and slow release fiber mats reached effective concentrations and had similar antibacterial activity. A biofilm formation assay revealed that both blank matrices are good substrates for the bacterial attachment and formation of biofilm. Importantly, prolonged release of CAM from drug-loaded fibers helps to avoid biofilm formation onto the dressing and hence avoids the treatment failure.


Asunto(s)
Antibacterianos/farmacología , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Cloranfenicol/farmacología , Infección de Heridas/tratamiento farmacológico , Animales , Vendajes , Química Farmacéutica , Cloranfenicol/uso terapéutico , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Portadores de Fármacos/química , Liberación de Fármacos , Modelos Químicos , Simulación de Dinámica Molecular , Nanofibras/química , Nanotecnología , Poliésteres/química , Infección de Heridas/microbiología
2.
iScience ; 27(6): 109835, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799576

RESUMEN

Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.

3.
Pharmaceutics ; 13(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834157

RESUMEN

The hydration of phospholipids, electrospun into polymeric nanofibers and used as templates for liposome formation, offers pharmaceutical advantages as it avoids the storage of liposomes as aqueous dispersions. The objective of the present study was to electrospin and characterize amphiphilic nanofibers as templates for the preparation of antibiotic-loaded liposomes and compare this method with the conventional film-hydration method followed by extrusion. The comparison was based on particle size, encapsulation efficiency and drug-release behavior. Chloramphenicol (CAM) was used at different concentrations as a model antibacterial drug. Phosphatidylcoline (PC) with polyvinylpyrrolidone (PVP), using ethanol as a solvent, was found to be successful in fabricating the amphiphilic composite drug-loaded nanofibers as well as liposomes with both methods. The characterization of the nanofiber templates revealed that fiber diameter did not affect the liposome size. According to the optical microscopy results, the immediate hydration of phospholipids deposited on the amphiphilic nanofibers occurred within a few seconds, resulting in the formation of liposomes in water dispersions. The liposomes appeared to aggregate more readily in the concentrated than in the diluted solutions. The drug encapsulation efficiency for the fiber-hydrated liposomes varied between 14.9 and 28.1% and, for film-hydrated liposomes, between 22.0 and 77.1%, depending on the CAM concentrations and additional extrusion steps. The nanofiber hydration method was faster, as less steps were required for the in-situ liposome preparation than in the film-hydration method. The liposomes obtained using nanofiber hydration were smaller and more homogeneous than the conventional liposomes, but less drug was encapsulated.

4.
RSC Adv ; 10(34): 20145-20154, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35520424

RESUMEN

Herein we demonstrate how peat, abundant and cheap biomass, can be successfully used as a precursor to synthesize peat-derived hard carbons (PDCs), applicable as electrode materials for sodium-ion batteries (SIB). The PDCs were obtained by pre-pyrolysing peat at 300-800 °C, removing impurities with base-acid solution treatment and thereafter post-pyrolysing the materials at temperatures (T) from 1000 to 1500 °C. By modification of pre- and post-pyrolysis temperatures we obtained hard carbons with low surface areas, optimal carbonization degree and high electrochemical Na+ storage capacity in SIB half-cells. The best results were obtained when pre-pyrolysing peat at 450 °C, washing out the impurities with KOH and HCl solutions and then post-pyrolysing the obtained carbon-rich material at 1400 °C. All hard carbons were electrochemically characterized in half-cells (vs. Na/Na+) and capacities as high as 350 mA h g-1 at 1.5 V and 250 mA h g-1 in the plateau region (E < 0.2 V) were achieved at charging current density of 25 mA g-1 with an initial coulombic efficiency of 80%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA