Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 333-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590427

RESUMEN

Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.

2.
Beilstein J Nanotechnol ; 15: 517-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774586

RESUMEN

Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, -40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 µg/mL TL + 2.5 µg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.

3.
Int J Biol Macromol ; 276(Pt 2): 133953, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029839

RESUMEN

Fungal infections are very alarming nowadays and are common throughout the world. Severe fungal infections may lead to a significant risk of mortality and morbidity worldwide. Sustained delivery of antifungal agents is needed to mitigate this problem. In the current study, an attempt has been made to formulate griseofulvin-loaded nanosponges using the quasi-emulsion solvent diffusion technique. For characterization, griseofulvin loaded nanosponges were tested by different instrumental techniques such as optical microscopy, scanning electron microscopy (SEM), powder X-ray diffractometer (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The antifungal activity of the nanosponges was assessed against Candida albican strain using the agar well-diffusion method. Finally, the drug-loaded nanosponges' in vitro sustained release activity was evaluated. FTIR spectra showed no chemical interference between the drug and polymers. Some of the peaks of the drug are not visible in the FTIR spectrum, which suggests drug entrapment. PXRD data showed that the drug lost its high crystallinity when entrapped in the nanosponge matrix. From the morphological studies via SEM and TEM, a brief idea of the surface morphology of the nanosponges was obtained. The small pores throughout the structure proved its high porosity. The antifungal sensitivity assay was successful, and a zone of inhibition was observed in all the formulations. The in-vitro drug release study showed sustained behaviour. The sustaining effect was due to the polymer and cross-linker used, which gave rise to a porous scaffold matrix. From the results, it can be concluded that griseofulvin-loaded nanosponges can be used for antifungal drug delivery against various topical skin infections.


Asunto(s)
Antifúngicos , Celulosa , Preparaciones de Acción Retardada , Liberación de Fármacos , Griseofulvina , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/administración & dosificación , Griseofulvina/química , Griseofulvina/farmacología , Griseofulvina/administración & dosificación , Celulosa/química , Celulosa/análogos & derivados , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Sistemas de Liberación de Medicamentos , Administración Tópica , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Rastreo Diferencial de Calorimetría
5.
Mem. Inst. Oswaldo Cruz ; 100(2): 213-219, Apr. 2005. tab, graf
Artículo en Inglés | LILACS | ID: lil-410862

RESUMEN

In spite of its widespread use, benznidazole's (BNZ) toxicity and low efficacy remains as major drawbacks that impair successful treatments against Chagas disease. Previously, attempting to increase the selectivity and reduce its toxicity on infected tissues, multilamellar liposomes (MLV) composed of hydrogenated soybean phosphatidylcholine (HSPC): distearoyl-phosphatidylglycerol (DSPG): cholesterol (CHOL) 2:1:2 mol:mol loaded with BNZ (MLV-BNZ) were designed. In this work we compared different properties of MLV-BNZ with those of BNZ. Opposite to other hydrophobic drugs, the results indicated that slight changes of BNZÎs association degree to proteins and lipoproteins should not modify the percentage of unbound drug available to exert pharmacological action. On the other hand, when loaded in MLV, BNZ reduced its association to plasma proteins in 45 percent and became refractory to the sinking effect of blood, dropping 4.5 folds. Additionally, when loaded in MLV, BNZ had higher volume distribution (160 ± 20 vs 102 ± 15 ml/kg) and total clearance (35.23 ± 2.3 vs 21.9 ± 1.4 ml/h.kg), and lower concentration-time curve (7.23 ± 0.2 vs 9.16 ± 0.5 æg.h/ml) than BNZ. Hence, these studies showed that for MLV-BNZ, the amount of BNZ can be substantially increased, from 25 to 70 percent, being this formulation more rapidly cleared from circulation than free drug; also due to the lower interaction with blood components, lower side effects can be expected.


Asunto(s)
Animales , Humanos , Ratas , Proteínas Sanguíneas/efectos de los fármacos , Nitroimidazoles/farmacocinética , Tripanocidas/farmacocinética , Interacciones Farmacológicas , Liposomas , Lipoproteínas/efectos de los fármacos , Nitroimidazoles/administración & dosificación , Nitroimidazoles/toxicidad , Permeabilidad , Ratas Wistar , Tripanocidas/administración & dosificación , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA