RESUMEN
The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1-14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15-18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0-1,000 mm year-1 rainfall zone by coupling field data19, machine learning20-22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha-1 and 63 kg C tree-1 in the arid zone to 3.7 Mg C ha-1 and 98 kg tree-1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24-29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.
Asunto(s)
Carbono , Clima Desértico , Ecosistema , Árboles , Carbono/análisis , Carbono/metabolismo , Árboles/anatomía & histología , Árboles/química , Árboles/metabolismo , Desecación , Imágenes Satelitales , África del Sur del Sahara , Aprendizaje Automático , Madera/análisis , Raíces de Plantas , Agricultura , Restauración y Remediación Ambiental , Bases de Datos Factuales , Biomasa , ComputadoresRESUMEN
A large proportion of dryland trees and shrubs (hereafter referred to collectively as trees) grow in isolation, without canopy closure. These non-forest trees have a crucial role in biodiversity, and provide ecosystem services such as carbon storage, food resources and shelter for humans and animals1,2. However, most public interest relating to trees is devoted to forests, and trees outside of forests are not well-documented3. Here we map the crown size of each tree more than 3 m2 in size over a land area that spans 1.3 million km2 in the West African Sahara, Sahel and sub-humid zone, using submetre-resolution satellite imagery and deep learning4. We detected over 1.8 billion individual trees (13.4 trees per hectare), with a median crown size of 12 m2, along a rainfall gradient from 0 to 1,000 mm per year. The canopy cover increases from 0.1% (0.7 trees per hectare) in hyper-arid areas, through 1.6% (9.9 trees per hectare) in arid and 5.6% (30.1 trees per hectare) in semi-arid zones, to 13.3% (47 trees per hectare) in sub-humid areas. Although the overall canopy cover is low, the relatively high density of isolated trees challenges prevailing narratives about dryland desertification5-7, and even the desert shows a surprisingly high tree density. Our assessment suggests a way to monitor trees outside of forests globally, and to explore their role in mitigating degradation, climate change and poverty.
Asunto(s)
Clima Desértico , Ecosistema , Árboles , África Occidental , Tamaño Corporal , Cambio Climático , Aprendizaje Profundo , Mapeo Geográfico , Lluvia , Árboles/fisiologíaRESUMEN
A novel mesophilic, anaerobic, mixotrophic bacterium, with designated strains EPR-MT and HR-1, was isolated from a semi-extinct hydrothermal vent at the East Pacific Rise and from an Fe-mat at Lo'ihi Seamount, respectively. The cells were Gram-negative, pleomorphic rods of about 2.0 µm in length and 0.5 µm in width. Strain EPR-MT grew between 25 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-20 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Strain HR-1 grew between 20 and 45 °C (optimum, 37.5-40 °C), 10 and 50 g l-1 NaCl (optimum, 15-25 g l-1) and pH 5.5 and 8.6 (optimum, pH 6.4). Shortest generation times with H2 as the primary electron donor, CO2 as the carbon source and ferric citrate as terminal electron acceptor were 6.7 and 5.5 h for EPR-MT and HR-1, respectively. Fe(OH)3, MnO2, AsO4 3-, SO4 2-, SeO4 2-, S2O3 2-, S0 and NO3 - were also used as terminal electron acceptors. Acetate, yeast extract, formate, lactate, tryptone and Casamino acids also served as both electron donors and carbon sources. G+C content of the genomic DNA was 59.4âmol% for strain EPR-MT and 59.2âmol% for strain HR-1. Phylogenetic and phylogenomic analyses indicated that both strains were closely related to each other and to Geothermobacter ehrlichii, within the class δ-Proteobacteria (now within the class Desulfuromonadia). Based on phylogenetic and phylogenomic analyses in addition to physiological and biochemical characteristics, both strains were found to represent a novel species within the genus Geothermobacter, for which the name Geothermobacter hydrogeniphilus sp. nov. is proposed. Geothermobacter hydrogeniphilus is represented by type strain EPR-MT (=JCM 32109T=KCTC 15831T=ATCC TSD-173T) and strain HR-1 (=JCM 32110=KCTC 15832).
Asunto(s)
Deltaproteobacteria/clasificación , Compuestos Férricos/metabolismo , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Deltaproteobacteria/aislamiento & purificación , Ácidos Grasos/química , Compuestos de Manganeso/análisis , Océano Pacífico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). With thin specimen conditions and localized EDS scattering potential, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak width are investigated using SrTiO3 (STO) as a model specimen. The relationship between the peak width and spatial resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study cation occupancy in a Sm-doped STO thin film and antiphase boundaries (APBs) present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the APBs likely owing to the effect of strain.
RESUMEN
The relationship between individual humor styles and several organizational variables was investigated: stress, satisfaction with coworkers, team cooperation, and organizational commitment. Four humor styles from the Humor Styles Questionnaire were measured. Survey results of 349 participants indicated different humor styles (affiliative, self-enhancing, aggressive, and self-defeating) can have either a positive or negative effect on organizational outcomes. Results suggested that both researchers and practitioners can benefit from having a better understanding of how different humor styles affect people and outcomes in organizations.
Asunto(s)
Conducta Cooperativa , Relaciones Interpersonales , Motivación , Cultura Organizacional , Lealtad del Personal , Ingenio y Humor como Asunto , Adulto , Recolección de Datos , Femenino , Humanos , Masculino , Autoimagen , Identificación SocialRESUMEN
Geothermobacter sp. strain EPR-M was isolated from a hydrothermal vent on the East Pacific Rise and has been shown to participate in the reduction of Fe(III) oxides. Here, we report its 3.73-Mb draft genome sequence.