Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 597(7878): 698-702, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526714

RESUMEN

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Animales , Antibacterianos/química , Compuestos Aza/química , Compuestos Aza/farmacología , Ciclooctanos/química , Ciclooctanos/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamasas
2.
Bioorg Med Chem ; 28(24): 115826, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160146

RESUMEN

UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC), the zinc metalloenzyme catalyzing the first committed step of lipid A biosynthesis in Gram-negative bacteria, has been a target for antibacterial drug discovery for many years. All inhibitor chemotypes reaching an advanced preclinical stage and clinical phase 1 have contained terminal hydroxamic acid, and none have been successfully advanced due, in part, to safety concerns, including hemodynamic effects. We hypothesized that the safety of LpxC inhibitors could be improved by replacing the terminal hydroxamic acid with a different zinc-binding group. After choosing an N-hydroxyformamide zinc-binding group, we investigated the structure-activity relationship of each part of the inhibitor scaffold with respect to Pseudomonas aeruginosa and Escherichia coli LpxC binding affinity, in vitro antibacterial potency and pharmacological properties. We identified a novel, potency-enhancing hydrophobic binding interaction for an LpxC inhibitor. We demonstrated in vivo efficacy of one compound in a neutropenic mouse E. coli infection model. Another compound was tested in a rat hemodynamic assay and was found to have a hypotensive effect. This result demonstrated that replacing the terminal hydroxamic acid with a different zinc-binding group was insufficient to avoid this previously recognized safety issue with LpxC inhibitors.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/química , Formamidas/química , Hemodinámica/efectos de los fármacos , Amidohidrolasas/metabolismo , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Sitios de Unión , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/patología , Femenino , Formamidas/metabolismo , Formamidas/farmacología , Formamidas/uso terapéutico , Semivida , Masculino , Ratones , Simulación de Dinámica Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA